2.分別利用逆矩陣和行列式的知識(shí)解方程MX=N中的X=($\begin{array}{l}x\\ y\end{array}$),其中M=[$\begin{array}{l}{5}&{2}\\{4}&{1}\end{array}$],N=[$\begin{array}{l}{5}\\{8}\end{array}$]
(不按題目要求做不給分)
方法一:(逆矩陣法)
方法二:(行列式法)

分析 方法一:(逆矩陣法)先求出M-1,利用X=M-1N計(jì)算即可;方法二:(行列式法)先求出系數(shù)行列式D,Dx,Dy,從而確定二元一次方程解的情況.

解答 解:方法一:(逆矩陣法)M=[$\begin{array}{l}{5}&{2}\\{4}&{1}\end{array}$],M-1=$[\begin{array}{l}{-\frac{1}{3}}&{\frac{2}{3}}\\{\frac{4}{3}}&{-\frac{5}{3}}\end{array}]$,
又∵N═[$\begin{array}{l}{5}\\{8}\end{array}$],MX=N,
∴X=M-1N=$[\begin{array}{l}{-\frac{1}{3}}&{\frac{2}{3}}\\{\frac{4}{3}}&{-\frac{5}{3}}\end{array}]$[$\begin{array}{l}{5}\\{8}\end{array}$]=$[\begin{array}{l}{\frac{11}{3}}\\{-\frac{20}{3}}\end{array}]$.
方法二:(行列式法)D=5-8=-3,Dx=5-16=-11,Dy=40-20=20,
∴x=$\frac{11}{3}$,y=-$\frac{20}{3}$.

點(diǎn)評(píng) 本題考查矩陣相關(guān)知識(shí),注意解題方法積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.地鐵三號(hào)線開(kāi)通后,某地鐵站人流量增大,小A瞄準(zhǔn)商機(jī)在地鐵口投資72萬(wàn)元購(gòu)得某商鋪使用權(quán),且商鋪?zhàn)罡呤褂媚晗逓?0年,現(xiàn)小A將該商鋪出租,第一年租金為5.4萬(wàn)元,以后每年租金比上一年增加0.4萬(wàn)元,設(shè)商鋪?zhàn)獬龅臅r(shí)間為x(0<x≤40)年.
(1)求商鋪?zhàn)獬鰔年后的租金總和y;
(2)若只考慮租金所得收益,則出租多長(zhǎng)時(shí)間能收回成本;
(3)小A考慮在商鋪出租x年后,將商鋪的使用權(quán)轉(zhuǎn)讓?zhuān)羯啼佫D(zhuǎn)讓的價(jià)格F與出租的時(shí)間x滿足關(guān)系式:F(x)=-0.3x2+10.56x+57.6,則何時(shí)轉(zhuǎn)讓商鋪,能使小A投資此商鋪所得年平均收益P(x)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{|x|}{x+2}$,若關(guān)于x的方程f(x)=kx2有4個(gè)不同的實(shí)數(shù)解,則k的取值范圍是(  )
A.k≥1B.k>1C.0<k<1D.0<k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.兩個(gè)袋中各裝有編號(hào)為1,2,3,4,5的5個(gè)小球,分別從每個(gè)袋中摸出一個(gè)小球,所得兩球編號(hào)數(shù)之和小于5的概率為(  )
A.$\frac{1}{5}$B.$\frac{7}{25}$C.$\frac{6}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A 的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg.在不超過(guò)600個(gè)工時(shí)的條件下,求生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)f(x)是定義在R上的偶函數(shù),g(x)是定義在R上的奇函數(shù),則下列敘述正確的是( 。
A.f(x)+g(x)為偶函數(shù)B.f(x)g(x)為奇函數(shù)C.xf(x)-xg(x)為偶函數(shù)D.f(|x|)+xg(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知△ABC的外接圓半徑為1,圓心為點(diǎn)O,且$3\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=0$,則$\overrightarrow{OC}•\overrightarrow{AB}$的值為(  )
A.$\frac{8}{5}$B.$\frac{7}{5}$C.$-\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于任意實(shí)數(shù)a,b,c,d以下四個(gè)命題中,其中正確的有( 。
①ac2>bc2,則a>b,
②若a>b,c>d,則a+c>b+d;
③若a>b,c>d,則ac>bd;
④若a>b,則$\frac{1}{a}<\frac{1}$.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.教材曾有介紹:圓x2+y2=r2上的點(diǎn)(x0,y0)處的切線方程為x0x+y0y=r2.我們將其結(jié)論推廣:橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的點(diǎn)(x0,y0)處的切線方程為$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}$=1,在解本題時(shí)可以直接應(yīng)用.已知,直線x-y+$\sqrt{3}$=0與橢圓C1:$\frac{x^2}{a^2}+{y^2}$=1(a>1)有且只有一個(gè)公共點(diǎn).
(1)求橢圓C1的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)橢圓C1上的兩點(diǎn)A、B分別作該橢圓的兩條切線l1、l2,且l1與l2交于點(diǎn)M(2,m).當(dāng)m變化時(shí),求△OAB面積的最大值;
(3)若P1,P2是橢圓C2:$\frac{x^2}{{2{a^2}}}+{y^2}$=1上不同的兩點(diǎn),P1P2⊥x軸,圓E過(guò)P1,P2,且橢圓C2上任意一點(diǎn)都不在圓E內(nèi),則稱(chēng)圓E為該橢圓的一個(gè)內(nèi)切圓.試問(wèn):橢圓C2是否存在過(guò)左焦點(diǎn)F1的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案