16.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系O-xyz中的坐標(biāo)分別是(0,0,0),(1,0,1),(0,1,1),($\frac{1}{2}$,1,0),繪制該四面體三視圖時(shí),按照如圖所示的方向畫(huà)正視圖,則得到左視圖可以為(  )
A.B.C.D.

分析 利用已知條件,畫(huà)出幾何體的圖形,然后畫(huà)出左視圖,判斷選項(xiàng)即可.

解答 解:滿(mǎn)足條件的四面體如右圖,

依題意投影到y(tǒng)Oz平面為正投影,所以左(側(cè))視方向如圖所示,所以得到左視圖效果如右圖,
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單幾何體的三視圖的畫(huà)法,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=-x2+ax+1.
(1)求函數(shù)y=f(x)在[t,t+2](t>0)上的最大值;
(2)若函數(shù)y=x2f(x)+g(x)有兩個(gè)不同的極值點(diǎn)x1,x2(x1<x2),且x2-x1>$\frac{1}{2}$ln2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx-2ax(其中a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的圖象在x=1處的切線(xiàn)方程;
(2)若f(x)≤2恒成立,求a的取值范圍;
(3)設(shè)g(x)=f(x)+$\frac{1}{2}$x2,且函數(shù)g(x)有極大值點(diǎn)x0.求證:x0f(x0)+1+ax${\;}_{0}^{2}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(mx2-x+m)e-x(m∈R).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m>0時(shí),證明:不等式f(x)≤$\frac{m}{x}$在(0,1+$\frac{1}{m}$]上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某商城舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額的商品后即可抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:
1.抽獎(jiǎng)方案有以下兩種,方案a:從裝有1個(gè)紅球、2個(gè)白球(僅顏色不同)的甲袋中隨機(jī)摸出1個(gè)球,若都是紅球,則獲得獎(jiǎng)金15元;否則,沒(méi)有獎(jiǎng)金,兌獎(jiǎng)后將抽出的球放回甲袋中,方案b:從裝有2個(gè)紅球、1個(gè)白球(僅顏色相同)的乙袋中隨機(jī)摸出1個(gè)球,若是紅球,則獲得獎(jiǎng)金10元;否則,沒(méi)有獎(jiǎng)金,兌獎(jiǎng)后將抽出的球放回乙袋中.
2.抽獎(jiǎng)條件是,顧客購(gòu)買(mǎi)商品的金額滿(mǎn)100元,可根據(jù)方案a抽獎(jiǎng)一次:滿(mǎn)150元,可根據(jù)方案b抽獎(jiǎng)一次(例如某顧客購(gòu)買(mǎi)商品的金額為310元,則該顧客采用的抽獎(jiǎng)方式可以有以下三種,根據(jù)方案a抽獎(jiǎng)三次或方案b抽獎(jiǎng)兩次或方案a、b各抽獎(jiǎng)一次).已知顧客A在該商場(chǎng)購(gòu)買(mǎi)商品的金額為250元.
(1)若顧客A只選擇方案a進(jìn)行抽獎(jiǎng),求其所獲獎(jiǎng)金為15元的概率;
(2)若顧客A采用每種抽獎(jiǎng)方式的可能性都相等,求其最有可能獲得的獎(jiǎng)金數(shù)(除0元外).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右頂點(diǎn)為A(2,0),左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)A且斜率為$\frac{1}{2}$的直線(xiàn)與y軸交于點(diǎn)P,與橢圓交于另一個(gè)點(diǎn)B,且點(diǎn)B在x軸上的射影恰好為點(diǎn)F1
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P的直線(xiàn)與橢圓交于M,N兩點(diǎn)(M,N不與A,B重合),若S△PAM=6S△PBN,求直線(xiàn)MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2lnx+$\frac{a}{x}$-2lna-k$\frac{x}{a}$
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時(shí)f(x)的極值存在且與a無(wú)關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx-x2+x
(1)求函數(shù)f(x)在點(diǎn)x=2處的切線(xiàn)的斜率;
(2)求函數(shù)f(x)的極值;
(3)證明:當(dāng)a≥2時(shí),關(guān)于x的不等式f(x)<($\frac{a}{2}$-1)x2+ax-1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在銳角△ABC中,D為AC邊的中點(diǎn),且BC=$\sqrt{2}BD=2\sqrt{2}$,O為△ABC外接圓的圓心,且cos∠AOC=-$\frac{3}{4}$.
(1)求∠ABC的余弦值,
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案