分析 利用導(dǎo)函研究函數(shù)的單調(diào)性,通過單調(diào)性求解值域.
解答 解:f(x)=sinx-$\frac{1}{2}$x(x∈[0,$\frac{π}{2}$]),
那么:f′(x)=cosx-$\frac{1}{2}$.
當(dāng)$0≤x<\frac{π}{3}$時,f′(x)>0,則f(x)是單調(diào)遞增,
當(dāng)$\frac{π}{3}<x≤\frac{π}{2}$時,f′(x)<0,則f(x)是單調(diào)遞減,
故得f($\frac{π}{3}$)max=$\frac{\sqrt{3}}{2}-\frac{π}{6}$,
∵f(0)=0,f($\frac{π}{2}$)=1$-\frac{π}{4}$
∴f(x)的值域為[0,$\frac{3\sqrt{3}-π}{6}$].
故答案為[0,$\frac{3\sqrt{3}-π}{6}$].
點評 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 25 | C. | 4 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰直角三角形 | D. | 等腰三角形或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com