【題目】已知函數(shù).
(1)求在處的切線方程;
(2)討論函數(shù)的單調(diào)性.
【答案】(1);(2)g(x)在(﹣∞,﹣4)和(﹣1,0)內(nèi)為減函數(shù),在(﹣4,﹣1)和(0,+∞)內(nèi)為增函數(shù).
【解析】試題分析:(1)求導(dǎo)數(shù)得,從而,又,根據(jù)點斜式可得切線方程為。(2)由題意可得,所以,結(jié)合導(dǎo)函數(shù)的符號可得函數(shù)的單調(diào)性。
試題解析:
(1)∵,
∴。
∴。
又,
所以曲線.
(2)令,
∴
令,解得x=0,x=﹣1或x=﹣4
當(dāng)x<﹣4時,g′(x)<0,g(x)單調(diào)遞減;
當(dāng)﹣4<x<﹣1時,g′(x)>0,g(x)單調(diào)遞增;
當(dāng)﹣1<x<0時,g′(x)<0,g(x)單調(diào)遞減;
當(dāng)x>0時,g′(x)>0,g(x)單調(diào)遞增。
綜上可知g(x)在(﹣∞,﹣4)和(﹣1,0)內(nèi)單調(diào)遞減,在(﹣4,﹣1)和(0,+∞)單調(diào)遞增。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,將三角形ABD沿BD折起,使點A在平面BCD上的投影G落在BD上.
(1)求證:平面ACD⊥平面ABD;
(2)求二面角G﹣AC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論錯誤的是 ( )
A. 若“且”與“或”均為假命題,則真假.
B. 命題“存在”的否定是“對任意”
C. “”是“”的充分不必要條件.
D. “若則a<b”的逆命題為真.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個頂點為,焦點在軸上,離心率為.
(1)求橢圓的方程;
(2)若橢圓與直線相交于不同的兩點,當(dāng)時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數(shù)m的最大值;
(2)當(dāng)a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 + =1(a>b>0)的離心率為 ,C為橢圓上位于第一象限內(nèi)的一點.
(1)若點C的坐標(biāo)為(2, ),求a,b的值;
(2)設(shè)A為橢圓的左頂點,B為橢圓上一點,且 = ,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點, 為其右焦點,點滿足.
①證明: 為定值;
②設(shè)直線與橢圓有兩個不同的交點,與軸交于點.若成等差數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓兩焦點分別為是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補(bǔ)的兩條直線分別交橢圓于兩點.
(1)求點坐標(biāo);
(2)求證:直線的斜率為定值;
(3)求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com