在△ABC中,已知角A,B,C所對的邊分別為a,b,c,且a=3,c=8,B=60°,則△ABC的周長是( 。
A、17B、19C、16D、18
考點:余弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,將a,b及cosB的值代入,得到關(guān)于c的方程,求出方程的解即可得到c的值.
解答: 解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2-2accosB,即:b2=9+64-24,即b=7,
則a+b+c=18
故選:D.
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是雙曲線
x2
4
-
y2
12
=1右支上的一個動點,F(xiàn)1,F(xiàn)2為左右兩個焦點,在△PF1F2中,令∠PF1F2=α,∠PF2F1=β,則tan
α
2
÷tan
β
2
的值為(  )
A、
1
3
B、3-2
2
C、3
D、與P的位置有關(guān)的變數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
m
=(2sinA-sinC,cosC),
n
=(sinB,cosB),且
m
n

(1)求∠B的大小;
(2)∠B的角平分線交AC于點D,記BC=x,BA=y,BD=1,請將y用含x的式子表示,并求出y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是
π
2
,若將f(x)的圖象先向右平移
π
6
個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形兩條對角線相等,則依次連接各邊中點所成的四邊形是( 。
A、空間四邊形B、矩形
C、正方形D、菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x
,若f(a)=2,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

社會只有在穩(wěn)定中才能發(fā)展,過高的失業(yè)率是社會不穩(wěn)定的重大因素,各國政府十分注重控制失業(yè)率.2008年全球經(jīng)濟危機,各國失業(yè)率普遍上升.某地區(qū)2008年第一季度的失業(yè)率為10%,當?shù)卣徊扇∫幌盗写胧,例如:擴大內(nèi)需、鼓勵輪班工作,崗位共享、培訓(xùn)過渡等,假設(shè)該地區(qū)的勞動人員數(shù)p不變,自2008年第一季度起,每年每季度統(tǒng)計分析一次,發(fā)現(xiàn)呈現(xiàn)如下規(guī)律:上季度在崗人員中有x%的人員本季度失業(yè),上季度失業(yè)人員中有97%的人員本季度重新上崗.記2008年第一季度的失業(yè)率為a&1,第二季度的失業(yè)率為a2,第三季度的失業(yè)率為a3,…,依此類推,各季度的失業(yè)率構(gòu)成數(shù)列{an}.
(1)寫出數(shù)列{an}的一個遞推關(guān)系式,要使每個季度的失業(yè)率逐步減少,則x滿足什么條件?
(2)假設(shè)該地區(qū)的失業(yè)率不大于5%,社會十分穩(wěn)定和諧,在當?shù)卣扇∮辛Υ胧┖,上季度在崗人員中只有5%的人員本季度失業(yè)(即x=5),問該地區(qū)從2008年的第二季度開始,社會是否穩(wěn)定和諧.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=2在點(1,1)處的切線與雙曲線
x2
a2
-
y2
b2
=1的一條漸近線垂直,則雙曲線的離心率等于(  )
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),f(-2)=0,且x>0時,f(x)+xf'(x)>0,則不等式xf(x)>0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案