19.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,則a、b的值為( 。
A.a=-8   b=-10B.a=-4   b=-9C.a=-1   b=9D.a=-1   b=2

分析 首項(xiàng)通過分式不等式求出解集,然后利用兩個(gè)不等式解集相同以及根與系數(shù)的關(guān)系求出a,b.

解答 解:不等式$\frac{4x+1}{x+2}$<0等價(jià)于(4x+1)(x+2)<0,
其解集為-2<x<$-\frac{1}{4}$,又不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,
所以ax2+bx-2=0的兩根為-2,$-\frac{1}{4}$,
所以-2-$\frac{1}{4}$=$-\frac{a}$,-2×($-\frac{1}{4}$)=$-\frac{2}{a}$,
解得a=-4,b=-9;
故選B.

點(diǎn)評 本題考查了分式不等式的解法以及一元二次不等式的解集與對應(yīng)方程根的關(guān)系;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在空間直角坐標(biāo)系O-xyz中,已知某四面體的四個(gè)頂點(diǎn)坐標(biāo)分別是A(1,0,0),B(0,1,0),C(0,0,2),D(1,1,2),則該四面體的正視圖的面積不可能為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{14}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出1×4,2×5,3×6,…,n(n+3)的前n項(xiàng)的和公式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題p:若x≠2,則x2-3x+2≠0;命題q:“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,下列命題中是真命題的是(  )
A.p∧qB.¬p∧qC.p∨¬qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.用0,1,2,3,4,5這六個(gè)數(shù)字,
(Ⅰ)可組成多少個(gè)無重復(fù)數(shù)字的五位數(shù)?
(Ⅱ)從中選四個(gè)組成無重復(fù)數(shù)字的四位數(shù),個(gè)位和十位都為偶數(shù)的有多少個(gè)?(最后結(jié)果用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,內(nèi)角B,C對的邊分別為b,c.若C=2B,則$\frac{c}$的取值范圍為( 。
A.[-2,2]B.($\frac{1}{2}$,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.用數(shù)學(xué)歸納法證明:1-(3+x)n(n∈N*)能被x+2整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)m,n∈R+,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則mn的最小值是( 。
A.3-2$\sqrt{2}$B.2$\sqrt{2}$+3C.$\sqrt{2}$+1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x-1)=x2-4x,解方程f(x+1)=0.

查看答案和解析>>

同步練習(xí)冊答案