17.已知函數(shù)f(x)=|x|+|x-3|.
(1)求不等式f($\frac{x}{2}$)<6的解集;
(2)若k>0且直線y=kx+5k與函數(shù)f(x)的圖象可以圍成一個(gè)三角形,求k的取值范圍.

分析 (Ⅰ)分類討論以去掉絕對(duì)值號(hào),即可解關(guān)于x的不等式f($\frac{x}{2}$)<6;
(Ⅱ)作出函數(shù)的圖象,結(jié)合圖象求解.

解答 解:(1)x≤0,不等式可化為-$\frac{1}{2}$x-$\frac{1}{2}$x+3<6,
∴x>-3,∴-3<x≤0;
0<x<6,不等式可化為$\frac{1}{2}$x-$\frac{1}{2}$x+3<6,成立;
x≥6,不等式可化為$\frac{1}{2}$x+$\frac{1}{2}$x-3<6,∴x<9,
∴6≤x<9;
綜上所述,不等式的解集為{x|-3<x<9};
(2)f(x)=|x|+|x-3|.
由題意作圖如下,
k>0且直線y=kx+5k與函數(shù)f(x)的圖象可以圍成一個(gè)三角形,
由直線過(0,3)可得k=$\frac{3}{5}$,由直線過(3,3)可得k=$\frac{3}{8}$,
∴$\frac{3}{8}$$<k≤\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了絕對(duì)值函數(shù)的應(yīng)用及數(shù)形結(jié)合的思想方法應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=lnx+x,則曲線f(x)在點(diǎn)P(1,f(1))處的切線與兩坐標(biāo)軸圍成的三角形的面積為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)對(duì)任意x∈[0,+∞)都有f(x+1)=-$\frac{1}{f(x)}$且當(dāng)x∈[0,1)時(shí),f(x)=x+1,若函數(shù)g(x)=f(x)-loga(x+1)(0<a<1)在區(qū)間[0,4)上有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{1}{5}$,$\frac{1}{4}$]B.($\frac{1}{5}$,$\frac{1}{4}$]C.[$\frac{1}{9}$,$\frac{1}{4}$]D.($\frac{1}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某離散型隨機(jī)變量X服從的分布列如圖,則隨機(jī)變量X的方差D(X)等于$\frac{2}{9}$.
X01
pm2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC中,AC=2,A=120°,cosB=$\sqrt{3}$sinC.
(Ⅰ)求邊AB的長;
(Ⅱ)設(shè)D是BC邊上一點(diǎn),且△ACD的面積為$\frac{3\sqrt{3}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=ax+b-1(其中0<a<1且0<b<1)的圖象一定不經(jīng)過(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{AB}$=(1,2),$\overrightarrow{BC}$=(0,m),$\overrightarrow{a}$=(-1,-3),$\overrightarrow{AC}$∥$\overrightarrow{a}$,則實(shí)數(shù)m的值是(  )
A.-1B.$\frac{7}{3}$C.-$\frac{7}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x)-f(x)>1,f(0)=2016,則不等式f(x)>2017•ex-1(其中e為自然對(duì)數(shù)的底數(shù))的解集為(  )
A.(-∞,0)∪(0,+∞)B.(2017,+∞)C.(0,+∞)D.(0,+∞)∪(2017,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2,AD=$\sqrt{3}$,∠DAB=$\frac{π}{6}$,PD⊥AD,PD⊥DC.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)若二面角P-BC-D為$\frac{π}{3}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案