已知集合A={0,1,2},B={x|1<x<4},則A∩B=( 。
| A. | {0} | B. | {1} | C. | {2} | D. | {1,2} |
科目:高中數(shù)學 來源: 題型:
已知一元二次方程x2+2ax+(7a﹣6)=0(a∈R)有兩個不等的實數(shù)根.
(Ⅰ)求a的取值范圍;
(Ⅱ)求函數(shù)f(a)=a+的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知等差數(shù)列{an},公差d≠0,a1=2,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{2﹣1}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在平面直角坐標系中,定義d(P,Q)=|x1﹣x2|+|y1﹣y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”,在這個定義下,給出下列命題:
①到原點的“折線距離”等于1的點的集合是一個圓;
②到原點的“折線距離”小于等于2的點構(gòu)成的區(qū)域面積為8;
③到M(0,﹣2),N(0,2)兩點的“折線距離”相等的點的軌跡方程是y=0;
④直線y=x+1上的點到N(0,2)的“折線距離”的最小值為1.
其中真命題有( 。
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
關(guān)于x的不等式E:ax2+ax﹣2≤0,其中a∈R.
(Ⅰ)若a=1時,求不等式E的解集;
(Ⅱ)若不等式E在R上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
演繹推理“因為對數(shù)函數(shù)y=logax(a>0且a≠1)是增函數(shù),而函數(shù)是對數(shù)函數(shù),所以是增函數(shù)”所得結(jié)論錯誤的原因是( 。
| A. | 大前提錯誤 | B. | 小前提錯誤 |
| C. | 推理形式錯誤 | D. | 大前提和小前提都錯誤 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在某個城市中,M,N兩地之間有南北街道5條、東西街道4條,現(xiàn)要求沿圖中的街道,以最短的路程從M走到N,則不同的走法共有 _________ 種.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com