4.已知兩組數(shù)A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,其中yi=2xi+3,(i=1,2,3,4,5,6,7),A組數(shù)的平均數(shù)與方差分別記為$\overline{x}$,SA2,B組數(shù)的平均數(shù)與方差分別記為$\overline{y}$,SB2,則下面關(guān)系式正確的是( 。
A.$\overline{y}$=2$\overline{x}$+3,sB2=2sB2+3B.$\overline{y}$=2$\overline{x}$+3,sB2=4sA2
C.$\overline{y}$=2$\overline{x}$,sB2=4sA2D.$\overline{y}$=2$\overline{x}$,sB2=4sA2+3

分析 利用平均數(shù)和方差的性質(zhì)直接求解.

解答 解:∵兩組數(shù)A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,
其中yi=2xi+3,(i=1,2,3,4,5,6,7),A組數(shù)的平均數(shù)與方差分別記為$\overline{x}$,SA2,
B組數(shù)的平均數(shù)與方差分別記為$\overline{y}$,SB2,
∴$\overline{y}$=2$\overline{x}$+3,sB2=4sA2
故選:B.

點評 本題考查平均數(shù)、方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意方差、平均數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,已知a=6,b=5,c=4,則△ABC的面積為$\frac{15\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.大學(xué)生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至11月份銷售某種機械配件的銷售量及銷售單價進(jìn)行了調(diào)查,銷售單價x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
月份7891011
銷售單價x元99.51010.511
銷售量y件1110865
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)預(yù)計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應(yīng)定為多少元才能獲得最大利潤?
參考公式:回歸直線方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合P={x||x|<1},Q={x|x2-2<0,x∈Z},則P∩Q={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列命題:
(1)已知等比數(shù)列的前n項和為Sn,則Sn,S2n-Sn,S3n-S2n成等比數(shù)列
(2)在△ABC中,若sinA=cosB,則△ABC的形狀為直角三角形
(3)數(shù)據(jù)2,3,4,5的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的一半
(4)已知f(x)=2x2+5x+3,g(x)=x2+4x+2,則f(x)>g(x)
(5)已知0<x<$\frac{1}{3}$,則函數(shù)y=x(1-3x)的最大值是$\frac{1}{12}$.
則上述命題正確的有幾個( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知角θ的終邊過點(2,3),則tan($\frac{11π}{4}$+θ)=( 。
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點O為△ABC外接圓的圓心,且$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\vec 0$,則△ABC的內(nèi)角A等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC中,已知A(2,1),B(-2,3),C(0,1),則BC邊上的中線所在的直線的一般式方程為x+3y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x),a≥0.
(1)當(dāng)a=1時,求函數(shù)f(x)的極值;
(2)若?x>0,f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案