分析 (1)由正弦定理化簡已知等式可得b2+c2-a2=bc,利用余弦定理可求cosA,結合A∈(0,π),可得A.
(2)由周期公式可求ω,解得函數(shù)解析式f(x)=sin(2x+$\frac{π}{3}$),由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,(k∈Z),可得f(x)的減區(qū)間.
解答 (本題滿分為12分)
解:(1)∵sin2B+sin2C-sin2A=sinBsinC,
∴b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴由A∈(0,π),可得:A=$\frac{π}{3}$….(6分)
(2)由題意,ω=$\frac{2π}{π}$=2,
∴f(x)=sin(2x+$\frac{π}{3}$),
∴由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,(k∈Z),可得:kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,(k∈Z),
∴f(x)的減區(qū)間為:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z)….(12分)
點評 本題主要考查了正弦定理,余弦定理,周期公式以及正弦函數(shù)的單調(diào)性,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 增函數(shù),且f(x)>0 | B. | 減函數(shù),且f(x)<0 | C. | 增函數(shù),且f(x)<0 | D. | 減函數(shù),且f(x)>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{3π}{4}$ | C. | π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若|$\vec a|>|\vec b|$,$\vec a>\vec b$ | B. | 若$|\vec a|=|\vec b|$,$\vec a=\vec b$ | ||
C. | 若$\vec a=\vec b$,則$\vec a∥\vec b$ | D. | 若$\vec a≠\vec b$,則$\vec a$與$\vec b$不是共線向量 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com