已知是實(shí)數(shù),函數(shù)。
(1)若,求的值及曲線在點(diǎn)處的切線方程;
(2)求在區(qū)間上的最大值。

(1).(2)

解析試題分析:(I)求出f'(x),利用f'(1)=3得到a的值,然后把a(bǔ)代入f(x)中求出f(1)得到切點(diǎn),而切線的斜率等于f'(1)=3,寫出切線方程即可;
(II)令f'(x)=0求出x的值,利用x的值分三個(gè)區(qū)間討論f'(x)的正負(fù)得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性得到函數(shù)的最大值.
(1)解:,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/87/5/hgvtb.png" style="vertical-align:middle;" />,所以
又當(dāng)時(shí),,,
所以曲線處的切線方程為
(2)解:令,解得,
當(dāng),即時(shí),上單調(diào)遞增,從而
當(dāng),即時(shí),上單調(diào)遞減,從而
當(dāng),即時(shí),上單調(diào)遞減,在上單調(diào)遞增,從而綜上所述,
考點(diǎn):本題主要考查了導(dǎo)數(shù)的基本性質(zhì)、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識(shí),以及綜合運(yùn)用所學(xué)知識(shí)分析問題和解決問題的能力.
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解導(dǎo)數(shù)的幾何意義的運(yùn)用,和導(dǎo)數(shù)的符號(hào)對(duì)于函數(shù)單調(diào)性的影響:導(dǎo)數(shù)大于零得到的區(qū)間為增區(qū)間,導(dǎo)數(shù)小于零得到的區(qū)間為減區(qū)間。對(duì)于參數(shù)分類討論是個(gè)難點(diǎn)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知曲線y=
(1)求曲線在x=2處的切線方程;(2)求曲線過點(diǎn)(2,4)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,函數(shù),
(其中均為常數(shù),且),當(dāng)時(shí),函數(shù)取得極小值.
均在函數(shù)的圖像上(其中的導(dǎo)函數(shù)).
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知為實(shí)數(shù),,
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),(),曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),(),曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè),
使得成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
時(shí),求的單調(diào)區(qū)間;
②若時(shí),函數(shù)的圖象總在函數(shù)的圖象的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),().
(Ⅰ)已知函數(shù)的零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)的范圍.
(Ⅱ)記函數(shù)的圖象為曲線.設(shè)點(diǎn),是曲線上的不同兩點(diǎn).如果在曲線上存在點(diǎn),使得:①;②曲線在點(diǎn)處的切線平行于直線,則稱函數(shù)存在“中值相依切線”.
試問:函數(shù))是否存在“中值相依切線”,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案