分析 (1)利用當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得出.
(2)根據(jù)等差數(shù)列的定義進(jìn)行判斷.
解答 解:(1)∵Sn=5n2+3n,
∴當(dāng)n=1時(shí),a1=8;
當(dāng)n≥2時(shí),an=Sn-Sn-1=5n2+3n-[5(n-1)2+3(n-1)]=10n-2.
當(dāng)n=1時(shí)上式也成立,
∴an=10n-2.
(2)∵由(1)得an=10n-2,
∴an-an-1=10n-2-[10(n-1)-2]=10,
∴數(shù)列{an}是以8為首項(xiàng),10為公差的等差數(shù)列.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0} | B. | {0,1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com