14.已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,則下列結(jié)論一定成立的是(  )
A.a1a8≤a2a7B.a1a8≥a2a7C.S1S8<S2S7D.S1S8≥S2S7

分析 對A.B.C.D.利用等差數(shù)列的通項(xiàng)公式與求和公式分別作差,即可判斷出結(jié)論.

解答 解:對于A.a(chǎn)1a8-a2a7=a1(a1+7d)-(a1+d)(a1+6d)=-6d2≤0,∴a1a8≤a2a7,因此正確.
B.由A可知B不一定成立.
C.S1S8-S2S7=${a}_{1}(8{a}_{1}+\frac{8×7}{2}d)$-(2a1+d)$(7{a}_{1}+\frac{7×6}{2}d)$=-$21(d+\frac{{a}_{1}}{2})^{2}$-$\frac{3}{4}{a}_{1}^{2}$≤0,∴S1S8≤S2S7,故C不一定正確.
D.由C可知D不正確.
故選:A.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、作差法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)m,n為實(shí)數(shù),則“mn>0”是“曲線$\frac{x^2}{m}-\frac{y^2}{n}$=1為雙曲線”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對?x∈R,f′(x)>f(x)都有成立,若f(1)=e,則不等式f(x)>ex的解是( 。
A.x>ln4B.0<x<ln4C.x>1D.0<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在等差數(shù)列{an}中,a1=1,前5項(xiàng)之和等于15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy,直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù)).在以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系中,曲線C:ρ=4sinθ.
(1)當(dāng)m=-1,α=30°時(shí),判斷直線l與曲線C的位置關(guān)系;
(2)當(dāng)m=1時(shí),若直線與曲l線C相交于A,B兩點(diǎn),設(shè)P(1,0),且||PA|-|PB||=1,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,若該幾何體的體積為$\frac{2π}{3}$,則a的值為( 。
A.1B.2C.2$\sqrt{2}$D.$\root{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a∈R,直線l:x+ay+a-2=0,圓M:(x-1)2+(y-1)2=1,則“a=0”是“直線l與圓M相切”的( 。
A.充分不必要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2x+1,g(x)=2aln(x-1)(a∈R).
(1)求函數(shù)h(x)=f(x)-g(x)的極值;
(2)當(dāng)a>0時(shí),若存在實(shí)數(shù)k,m使得不等式g(x)≤kx+m≤f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知tanx=2,則$\frac{3sinx+cosx}{cosx-3sinx}$的值為-$\frac{7}{5}$.

查看答案和解析>>

同步練習(xí)冊答案