A. | (-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$) | B. | [$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$) | C. | (-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$] | D. | (-1,-$\frac{1+ln3}{3}$] |
分析 求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)f(x)的單調(diào)區(qū)間,再由f2(x)+af(x)>0求得f(x)的范圍,結(jié)合函數(shù)f(x)的單調(diào)性可得使不等式f2(x)+af(x)>0恰有兩個(gè)整數(shù)解的實(shí)數(shù)a的取值范圍.
解答 解:∵f′(x)=$\frac{1-(1+lnx)}{{x}^{2}}=-\frac{lnx}{{x}^{2}}$,
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
當(dāng)a>0時(shí),f2(x)+af(x)>0?f(x)<-a或f(x)>0,此時(shí)不等式f2(x)+af(x)>0有無數(shù)個(gè)整數(shù)解,不符合題意;
當(dāng)a=0時(shí),f2(x)+af(x)>0?f(x)≠0,此時(shí)不等式f2(x)+af(x)>0有無數(shù)個(gè)整數(shù)解,不符合題意;
當(dāng)a<0時(shí),f2(x)+af(x)>0?f(x)<0或f(x)>-a,要使不等式f2(x)+af(x)>0恰有兩個(gè)整數(shù)解,必須滿足
f(3)≤-a<f(2),得$-\frac{1+ln2}{2}$<a≤$-\frac{1+ln3}{3}$,
故選:C.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查一元二次不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{16}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com