6.在直角坐標系xoy中,圓的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),直線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t為參數(shù)).
(1)若直線C1與O圓相交于A,B,求弦長|AB|;
(2)以該直角坐標系的原點O為極點,x軸的非負半軸為極軸建立極坐標系,圓C2的極坐標方程為$ρ=2cosθ+2\sqrt{3}sinθ$,圓O和圓C2的交點為P,Q,求弦PQ所在直線的直角坐標方程.

分析 (1)將參數(shù)方程化為普通方程,求圓心到直線的距離,利用勾股定理即可求弦長|AB|;
(2)將圓C2的極坐標方程$ρ=2cosθ+2\sqrt{3}sinθ$化為普通方程,整體代換可得弦PQ所在直線的直角坐標方程.

解答 解:(1)由直線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t為參數(shù))消去參數(shù)t,
可得:x-y+1=0,即直線C1的普通方程為x-y+1=0.
圓的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),
根據(jù)sin2θ+cos2θ=1消去參數(shù)θ,可得:x2+y2=2.
那么:圓心到直線的距離d=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
故得弦長|AB|=2$\sqrt{{r}^{2}-9nhx3pn^{2}}$=$\sqrt{6}$.
(2)圓C2的極坐標方程為$ρ=2cosθ+2\sqrt{3}sinθ$,
利用ρ2=x2+y2,ρcosθ=x,ρsinθ=y,可得圓C2的普通方程為${x}^{2}+{y}^{2}=2x+2\sqrt{3}y$.
∵圓O為:x2+y2=2.
∴弦PQ所在直線的直角坐標方程為:2=$2x+2\sqrt{3}y$,
即$x+\sqrt{3}y-1=0$.

點評 本題考查點的參數(shù)方程和直角坐標的互化,以及利用平面幾何知識解決問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.設i是虛數(shù)單位,則復數(shù)i3-$\frac{2}{i}$=( 。
A.iB.3iC.-iD.-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{1+lnx}{x}$,若關于x的不等式f2(x)+af(x)>0恰有兩個整數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$)B.[$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$)C.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$]D.(-1,-$\frac{1+ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{1-{x}^{3},x≤1}\end{array}\right.$,若函數(shù)y=f(x)-a(x-1)恰有三個零點,則實數(shù)a的取值范圍是( 。
A.(-$\frac{3}{4}$,0)B.(-∞,-$\frac{3}{4}$)C.(-3,-$\frac{3}{4}$)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點分別為F1,F(xiàn)2,過F1作x軸的垂線交雙曲線于A,B兩點,若$∠A{F_2}B<\frac{π}{3}$,則雙曲線離心率的取值范圍是( 。
A.$({1,\sqrt{3}})$B.$({1,\sqrt{6}})$C.$({1,2\sqrt{3}})$D.$({\sqrt{3},3\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設等差數(shù)列{an}的前n項和Sn滿足S5=15,且2a2,a6,a8+1成公比大于1的等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設${b_n}={2^n}•{a_n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在等差數(shù)列{an}中,Sn為其前n項和,若a3+a4+a8=25,則S9=(  )
A.60B.75C.90D.105

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡點米布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:
井號I123456
坐標(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的$\widehat$,$\widehat{a}$的值($\widehat$,$\widehat{a}$精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?(參考公式和計算結果:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\sum_{i=1}^{4}{{x}_{2i-1}}^{2}$=94,$\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}$=945)
(Ⅲ)設出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>0)的一個焦點為F(-1,0),左、右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)當直線l的傾斜角為45°時,求線段CD的長;
(2)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

同步練習冊答案