A. | 0 | B. | -2 | C. | 2 | D. | 14 |
分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=x}\\{y=k}\end{array}\right.$,得A(k,k),
化目標(biāo)函數(shù)z=2x+y為y=-2x+z,
由圖可知,當(dāng)直線y=-2x+z過A時,直線在y軸上的截距最小,z有最小值為2k+k=3k=-6,
∴k=-2.
故選:B.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{y^2}{4}-{x^2}=1$ | C. | ${y^2}-\frac{x^2}{4}=1$ | D. | $\frac{y^2}{16}-\frac{x^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-4y+15=0 | B. | 3x+4y-33=0 | C. | 3x-4y+15=0或x=3 | D. | 3x+4y-33=0或x=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\frac{\sqrt{17}}{3}$ | D. | $\frac{\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\hat y=x+3$ | B. | $\hat y=x+4$ | C. | $\hat y=2x+3$ | D. | $\hat y=2x+4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{6}}}{4}$ | D. | $\frac{{\sqrt{10}}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com