20.函數(shù)$y=\frac{{\sqrt{1-x}}}{{\sqrt{x}}}$的定義域為( 。
A.(0,+∞)B.(0,1]C.(-∞,0)∪[1,+∞)D.(-∞,1]

分析 根據(jù)二次根式的性質(zhì)得到關(guān)于x的不等式組即可.

解答 解:由題意得:$\left\{\begin{array}{l}{1-x≥0}\\{x>0}\end{array}\right.$,
解得:0<x≤1,
故函數(shù)的定義域是(0,1],
故選:B.

點評 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{-{x}^{2}+4x}$的單調(diào)增區(qū)間為(  )
A.[0,2]B.(-∞,2]C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“若a+b+c=3,則a2+b2+c2≥3”的逆命題是(  )
A.“若a2+b2+c2≥3,則a+b+c=3”B.“若a2+b2+c2<3,則a+b+c≠3”
C.“若a2+b2+c2≥3,則a+b+c≠3”D.“若a2+b2+c2<3,則a+b+c=3”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(Ⅰ)過點(3,-1),且離心率$e=\sqrt{2}$;
(Ⅱ)一條漸近線為$y=-\frac{3}{2}x$,頂點間距離為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(3-2a)>f(a),則實數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個結(jié)論中正確的個數(shù)是( 。
(1)“x2+x-2>0”是“x>1”的充分不必要條件;
(2)命題:“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”;
(3)“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題;
(4)若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若[x]表示不超過x的最大整數(shù),如[2,6]=2,[-2,6]=-3,執(zhí)行如圖所示的程序框圖,記輸出的值為S0,則${log_{\frac{1}{3}}}{S_0}$=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=ax2-4ax-lnx,則f(x)在(1,3)上不單調(diào)的一個充分不必要條件是( 。
A.a∈(-∞,$\frac{1}{6}$)B.a∈(-$\frac{1}{2}$,+∞)C.a∈(-$\frac{1}{2}$,$\frac{1}{6}$)D.a∈($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)曲線y=$\frac{x+1}{x-1}$在點(2,3)處的切線與直線ax+y+1=0平行,則a=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案