【題目】已知△ABC的內角AB,C的對邊分別為ab,c,,

(1)求角A的大小;

(2)若a=3,求△ABC的周長L的取值范圍.

【答案】(1)

(2)L∈(6,9]

【解析】

(1)由條件可得,再結合正弦定理及三個角之間的關系可得,進而求出A;

(2)利用余弦定理再結合基本不等式,求得3<b+c≤6,即可得到周長L的范圍.

(1)由題意,

所以,

由正弦定理,可得

因為,所以sinB=sinA+C=sinAcosC+cosAsinC,

又由,則,

整理得,又因為,所以

2)由(1)和余弦定理,即

,整理得

又由(當且僅當b=c=3時等號成立)

從而,可得b+c≤6,

b+ca=3,∴3<b+c≤6,從而周長L∈(6,9].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),在等腰直角中,斜邊,D的中點,將沿折疊得到如圖(2)所示的三棱錐,若三棱錐的外接球的半徑為,則_________.

圖(1 圖(2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在六面體ABCDA1B1C1D1中,AA1//CC1,A1B=A1D,AB=AD.求證:

1AA1BD

2BB1//DD1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)設函數(shù),若,求的極值;

2)設函數(shù),若的圖象與的圖象有兩個不同的交點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有一塊圓心,半徑為200米,圓心角為的扇形綠地,半徑的中點分別為,為弧上的一點,設,如圖所示,擬準備兩套方案對該綠地再利用.

(1)方案一:將四邊形綠地建成觀賞魚池,其面積記為,試將表示為關于的函數(shù)關系式,并求為何值時,取得最大?

(2)方案二:將弧和線段圍成區(qū)域建成活動場地,其面積記為,試將表示為關于的函數(shù)關系式;并求為何值時,取得最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于的點.

(1)證明:平面平面;

(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體,平面平面,四邊形為菱形, , , 中點.

1)求證: 平面;

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】武漢有九省通衢之稱,也稱為江城,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.

1)為了解·勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:

現(xiàn)從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內的人數(shù)為,求;

2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3型游船供游客乘坐觀光.2010201910年間的數(shù)據(jù)資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數(shù)據(jù)分成3個區(qū)間整理得表:

勞動節(jié)當日客流量

頻數(shù)(年)

2

4

4

以這10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.

該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯(lián)關系如下表:

勞動節(jié)當日客流量

型游船最多使用量

1

2

3

若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入?yún)s不被使用,則游船中心當日虧損0.5萬元.(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數(shù)學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,解不等式;

(Ⅱ)若的圖象與x軸圍成圖形的面積大于6,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案