6.已知函數(shù)y=Asin(ωx+φ),(A>0,|φ|<π,ω>0)的一段圖象如圖所示.
(1)求函數(shù)的解析式;
(2)求這個函數(shù)的周期和遞增區(qū)間;
(3)說明該函數(shù)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換而得到.

分析 (1)由圖象的頂點坐標求出A,由周期求出ω,通過圖象經(jīng)過($\frac{π}{6}$,2),求出φ,從而得到f(x)的解析式.
(2)由(1)可得函數(shù)的周期T,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得單調遞增區(qū)間.
(3)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結論.

解答 解:(1)∵由函數(shù)的圖象可得A=2,T=2×($\frac{2π}{3}$-$\frac{π}{6}$)=π=$\frac{2π}{ω}$,
∴解得ω=2.
∵圖象經(jīng)過($\frac{π}{6}$,2),可得:2=2sin(2×$\frac{π}{6}$+φ),
∴可得:2×$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
∵|φ|<π,
∴φ=$\frac{π}{6}$,
故函數(shù)的解析式為:y=2sin(2x+$\frac{π}{6}$).
(2)由(1)可得函數(shù)的周期T=2×($\frac{2π}{3}$-$\frac{π}{6}$)=π,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
可得單調遞增區(qū)間為:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(3)把y=sinx的圖象向左平移$\frac{π}{6}$個單位,可得函數(shù)y=sin(x+$\frac{π}{6}$)的圖象;
再把所得圖象上點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍,可得函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象;
再把所得圖象上的點的縱坐標變?yōu)樵瓉淼?倍,可得函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求函數(shù)的解析式,注意函數(shù)的周期的求法,考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sin xcos x-$\frac{1}{2}$cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期和單調遞增區(qū)間;
(2)當x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的最大值和最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位得到的函數(shù)圖象關于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值與最小值之和為(  )
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在長為10cm的線段AB上任取一點G,用AG為半徑作圓,則圓的面積介于36π cm2到64π cm2的概率是( 。
A.$\frac{1}{5}$B.$\frac{1}{10}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax(x≥0)的圖象經(jīng)過點(2,$\frac{1}{4}$),其中a>0且a≠1.
(1)求a的值;
(2)求函數(shù)y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線3x2-y2=k的焦距是8,則k的值為( 。
A.±12B.12C.±48D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知雙曲線C與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1共焦點,且它們的離心率之和為$\frac{24}{5}$,求雙曲線C的標準方程及其漸進線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=$\sqrt{{x^2}-4}$的單調遞增區(qū)間是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1.
(1)求函數(shù)的對稱軸和對稱中心;
(2)求函數(shù)的單調增區(qū)間和單調減區(qū)間;
(3)若x∈(-$\frac{π}{4}$,$\frac{π}{3}$),求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案