分析 由二面角α-l-β內(nèi)部一點P到α,β的距離分別PA=PB=1,P到棱l的距離PO=$\sqrt{2}$,利用三垂線定理得∠AOB是二面角α-l-β的平面角,由此能求出二面角α-l-β的大。
解答 解:如圖,二面角α-l-β內(nèi)部一點P到α,β的距離分別PA=PB=1,
P到棱l的距離PO=$\sqrt{2}$,
則PA⊥α,A是垂足,PB⊥β,B是垂足,PO⊥l,O是垂足,
連結(jié)AO,BO,由三垂線定理得AO⊥l,BO⊥l,
∴∠AOB是二面角α-l-β的平面角,
∵AO,BO,PO都于直線l垂直,∴A、O、B、P共面,
∵PA=PB=1,PO=$\sqrt{2}$,PA⊥AO,PB⊥BO,
∴AO=BO=$\sqrt{2-1}$=1,
∴∠POA=∠POB=45°,
∴∠AOB=∠POA+∠POB=45°+45°=90°.
∴二面角α-l-β的大小為90°.
故答案為:90°.
點評 本題考查二面角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$+$\frac{1}{3}$i | B. | $\frac{2}{3}$-$\frac{1}{3}$i | C. | $\frac{6}{5}$+$\frac{3}{5}$i | D. | $\frac{6}{5}$-$\frac{3}{5}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 雙曲線 | B. | 線段 | C. | 拋物線 | D. | 橢圓 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com