已知函數(shù)f(x)=logax(a>0且a≠1),若數(shù)列:2,f(a1),f(2),…,f(an),2n+4(n∈N*)成等差數(shù)列。
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若0<a<1,數(shù)列{an}的前n項(xiàng)和為Sn,求Sn;
(3)若a=2,令bn=an·f(an),對(duì)任意n∈N*,都有bn>f-1(t),求實(shí)數(shù)t的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上最大值為20,求它在該區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N,都能使m整除f(n),則最大的m的值為 ( )
A.30 B.26 C.36 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}中,a1=1,an+1=(an+)(n∈N*),且{an}存在極限。
(1)證明:{an}時(shí)先增后減數(shù)列,并求an的最大值;
(2)已知圓錐曲線Cn的方程為:設(shè)Cn=C,求曲線C的方程并求曲線C的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若直線2x-y+c=0按向量a=(1,-1)平移后與圓x2+y2=5相切,則c的值為( )
A.8或-2 B.6或-4
C.4或-6 D.2或-8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)P < 0 是一常數(shù),過(guò)點(diǎn)`Q(2P,0)的直線與拋物線交于相導(dǎo)兩點(diǎn)A、B 以線段AB 為直徑作圓H(H為圓心).試證拋物線頂點(diǎn)在圓H的圓周上;并求圓H的面積最小時(shí)直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°E、F分別是AC、AD上的動(dòng)點(diǎn),且(0<λ<1),如圖。
(1)求證:不論λ為何值,恒有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com