15.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},則A∩B的元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

分析 集合A表示以原點(diǎn)為圓心,以1為半徑的圓,集合B 表示一條直線,畫(huà)圖,可得A∩B的元素個(gè)數(shù)為2.

解答 解:集合A表示的是圓心在原點(diǎn)的單位圓,集合B表示的是直線y=x,據(jù)此畫(huà)出圖象,可得圖象有兩個(gè)交點(diǎn),
即A∩B的元素個(gè)數(shù)為2.
故選:C.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)直線3x-4y+5=0的傾斜角為α.
(1)求tan2α的值;
(2)求$cos({\frac{π}{6}-α})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=d$(n∈N*,d為常數(shù)),則稱{an}為“調(diào)和數(shù)列”,已知正項(xiàng)數(shù)列$\left\{{\frac{1}{x_n}}\right\}$為“調(diào)和數(shù)列”,且x1+x2+…+x20=200,則$\frac{1}{x_3}+\frac{1}{{{x_{18}}}}$的最小值為( 。
A.$\frac{1}{10}$B.10C.$\frac{1}{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與g($\frac{1}{x}$)的大小關(guān)系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<$\frac{1}{x}$對(duì)任意x>0成立?若存在求出x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.拋物線y=x2的一條切線方程為6x-y-9=0,則切點(diǎn)坐標(biāo)為(3,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=ax2-c滿足:-4≤f(1)≤-1,-1≤f(2)≤5,則f(3)應(yīng)滿足( 。
A.-7≤f(3)≤26B.-4≤f(3)≤15C.-1≤f(3)≤20D.$-\frac{28}{3}≤f(3)≤\frac{35}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖為某市2017年2月28天的日空氣質(zhì)量指數(shù)折線圖.

由中國(guó)空氣質(zhì)量在線監(jiān)測(cè)分析平臺(tái)提供的空氣質(zhì)量指數(shù)標(biāo)準(zhǔn)如下:
空氣質(zhì)量指數(shù)(0,50](50,100](100,150](150,200](200,300]300以上
空氣質(zhì)量等級(jí)1級(jí)優(yōu)2級(jí)良3級(jí)輕度污染4級(jí)中度污染5級(jí)重度污染6級(jí)嚴(yán)重污染
(Ⅰ)請(qǐng)根據(jù)所給的折線圖補(bǔ)全下方的頻率分布直方圖(并用鉛筆涂黑矩形區(qū)域),并估算該市2月份空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)的平均數(shù)(保留小數(shù)點(diǎn)后一位);

(Ⅱ)研究人員發(fā)現(xiàn),空氣質(zhì)量指數(shù)測(cè)評(píng)中PM2.5與燃燒排放的CO兩個(gè)項(xiàng)目存在線性相關(guān)關(guān)系,以100ug/m3為單位,如表給出PM2.5與CO的相關(guān)數(shù)據(jù):
CO(x)0.511.5
PM2.5(y)124
求y關(guān)于x的回歸方程,并估計(jì)當(dāng)CO排放量是200ug/m3時(shí),PM2.5的值.
(用最小二乘法求回歸方程的系數(shù)是$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知點(diǎn)A(3,0),$\overrightarrow{EA}$=(2,1),$\overrightarrow{EF}$=(1,2),若P(2,0)滿足$\overrightarrow{EP}$=λ$\overrightarrow{EA}$+μ$\overrightarrow{EF}$,則λ+μ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某少數(shù)民族的刺繡有著悠久的歷史,圖中(1)、(2)、(3)、(4)為她們刺銹最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方向構(gòu)成,小正方形數(shù)越多刺銹越漂亮,向按同樣的規(guī)律刺銹(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形

(1)求f(6)的值
(2)求出f(n)的表達(dá)式
(3)求證:當(dāng)n≥2時(shí),$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案