12.若復(fù)數(shù)z滿足|z|•$\overline{z}$=20-15i,則z為(  )
A.4+3iB.4-3iC.3+4iD.3-4i

分析 設(shè)復(fù)數(shù)z=a+bi(a,b∈R),由|z|•$\overline{z}$=20-15i,可得$\sqrt{{a}^{2}+^{2}}$a-b$\sqrt{{a}^{2}+^{2}}$i=20-15i,利用復(fù)數(shù)相等即可得出.

解答 解:設(shè)復(fù)數(shù)z=a+bi(a,b∈R),∵|z|•$\overline{z}$=20-15i,∴$\sqrt{{a}^{2}+^{2}}$a-b$\sqrt{{a}^{2}+^{2}}$i=20-15i,
可得:a$\sqrt{{a}^{2}+^{2}}$=20,-b$\sqrt{{a}^{2}+^{2}}$=-15,
解得a=4,b=3.
z=4+3i.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、復(fù)數(shù)相等,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)i是虛數(shù)單位,復(fù)數(shù)$\frac{1-ai}{1+i}$為純虛數(shù),則實(shí)數(shù)a為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某幾何體的三視圖如圖所示:
(1)求此幾何體的體積
(2)求此幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為得到函數(shù)$y=cos(2x+\frac{π}{6})$的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{2π}{3}$個長度單位B.向左平移$\frac{π}{12}$個長度單位
C.向左平移$\frac{π}{3}$個長度單位D.向右平移$\frac{π}{12}$個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校在兩個班進(jìn)行教學(xué)方式對比試驗(yàn),兩個月后進(jìn)行了一次檢測,試驗(yàn)班與對照班成績統(tǒng)計如2×2列聯(lián)表所示(單位:人).
 80及80分以下80分以上合計
試驗(yàn)班351550
對照班15m50
合計5050n
(1)求m,n;
(2)你有多大把握認(rèn)為“教學(xué)方式與成績有關(guān)系”?
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
其中n=a+b+c+d為樣本容量.
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在△ABC中,AB=2,cosB=$\frac{1}{3}$,點(diǎn)D在線段BC上.
(1)若BD=2DC,△ACD$\frac{4}{3}$$\sqrt{2}$的面積為,求邊AC的長;
(2)若∠ADC=$\frac{2π}{3}$,求三角形ABD的面積S△ABD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F(xiàn)2,且|F1F2|=2$\sqrt{13}$,橢圓的長半軸與雙曲線實(shí)半軸之差為4,離心率之比為3:7,則雙曲線方程為( 。
A.$\frac{x^2}{9}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{9}=1$C.$\frac{y^2}{9}-\frac{x^2}{4}=1$D.$\frac{y^2}{4}-\frac{x^2}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{lnx}|\\ 2-lnx\end{array}\right.$$\begin{array}{l}0<x≤e\\ x>e\end{array}$,若正實(shí)數(shù)a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍為( 。
A.(e,2e+e2B.$(\frac{1}{e}+2e,2+{e^2})$C.$(\frac{1}{e}+e,2+{e^2})$D.$(\frac{1}{e}+e,2e+{e^2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的前n項(xiàng)和等于( 。
A.2n-1B.5n-1C.3n-1D.4n-1

查看答案和解析>>

同步練習(xí)冊答案