【題目】已知函數(shù)是定義在R上的偶函數(shù),對任意都有,當,且時,,給出如下命題:

;

②直線是函數(shù)的圖象的一條對稱軸;

③函數(shù)上為增函數(shù);

④函數(shù)上有四個零點.

其中所有正確命題的序號為( )

A. ①② B. ②④ C. ①②③ D. ①②④

【答案】D

【解析】

根據(jù)題意得到函數(shù)的奇偶性、周期性和單調(diào)性,然后逐一進行判定

,則由,函數(shù)是定義在上的偶函數(shù),

可得:,故,故正確

可得:,故函數(shù)是周期等于6的周期函數(shù)

是偶函數(shù),軸是對稱軸,故直線是函數(shù)的圖象的一條對稱軸,故正確

,且時,,

上為增函數(shù)

是偶函數(shù),故上為減函數(shù)

函數(shù)是周期等于6的周期函數(shù)

上為減函數(shù),故錯誤

函數(shù)是周期等于6的周期函數(shù)

故函數(shù)上有四個零點,故正確

綜上所述,則正確命題的序號為①②④

故選

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的方程為

1)求過點且與圓相切的直線的方程;

2)直線過點,且與圓交于、兩點,若,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓.

1)若直線過點且到圓心的距離為,求直線的方程;

2)設(shè)過點的直線與圓交于、兩點(的斜率為負),當時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)點為橢圓的右焦點,圓且斜率為的直線交圓兩點,交橢圓于點兩點,已知當時,

(1)求橢圓的方程.

(2)當時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點F為拋物線的焦點,點A在拋物線E上,

點B在x軸上,且是邊長為2的等邊三角形。

(1)求拋物線E的方程;

(2)設(shè)C是拋物線E上的動點,直線為拋物線E在點C處的切線,求點B到直線距離的最小值,并求此時點C的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,DADC2,,EC1D1的中點,FCE的中點.

1)求證:EA∥平面BDF

2)求證:平面BDF⊥平面BCE;

3)求二面角DEBC的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了考核甲,乙兩部門的工作情況,隨機訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下:

1)分別估計該市的市民對甲,乙兩部門評分的中位數(shù);

2)分別估計該市的市民對甲,乙兩部門的評分高于90的概率;

3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當 時,討論 的極值情況;

(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調(diào)查,F(xiàn)在按課外閱讀時間的情況將學生分成三類:A類(不參加課外閱讀),B類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),C類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時)。調(diào)查結(jié)果如下表:

A類

B類

C類

男生

x

5

3

女生

y

3

3

(I)求出表中x,y的值;

(II)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關(guān);

男生

女生

總計

不參加課外閱讀

參加課外閱讀

總計

(III)從抽出的女生中再隨機抽取3人進一步了解情況,記X為抽取的這3名女生中A類人數(shù)和C類人數(shù)差的絕對值,求X的數(shù)學期望。

附:K2=)

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

同步練習冊答案