分析 (1)推導(dǎo)出OM∥VB,由此能證明VB∥平面MOC.
(2)推導(dǎo)出OC⊥AB,從而OC⊥平面VAB,由此能證明平面MOC⊥平面VAB.
(3)推導(dǎo)出OC⊥OA,OC⊥OM,從而∠AOM為二面角M-OC-A的平面角,由此能求出二面角M-OC-A的大。
解答 (本題滿分9分)
證明:(1)因?yàn)镺,M分別為AB,VA的中點(diǎn),所以O(shè)M∥VB.
又因?yàn)镺M?平面MOC,VB?平面MOC,
所以VB∥平面MOC.(3分)
(2)因?yàn)锳C=BC,O為AB中點(diǎn),所以O(shè)C⊥AB.
因?yàn)槠矫鎂AB⊥平面ABC,且平面VAB∩平面ABC=AB,OC?平面ABC,
所以O(shè)C⊥平面VAB.
因?yàn)镺C?平面MOC,所以平面MOC⊥平面VAB.(6分)
解:(3)由(2)知OC⊥平面VAB,
所以O(shè)C⊥OA,OC⊥OM,
所以∠AOM為二面角M-OC-A的平面角.
因?yàn)镺,M分別為AB,VA的中點(diǎn),所以O(shè)M∥VB
所以∠AOM=∠VBA=60°,
所以二面角M-OC-A的大小為60°.(9分)
點(diǎn)評(píng) 本題考查線面平行、面面垂直的證明,考查二面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}<\frac{1}{a}<{b^2}<{a^2}$ | B. | $\frac{1}<\frac{1}{a}<{a^2}<{b^2}$ | C. | $\frac{1}{a}<\frac{1}<{b^2}<{a^2}$ | D. | $\frac{1}{a}<\frac{1}<{a^2}<{b^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com