14.已知:如圖,空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn).
求證:EF∥平面BCD.

分析 連接BD,利用中位線定理證明EF∥BD,即可證明EF∥平面BCD.

解答 證明:連接BD
因?yàn)锳E=EB,AF=FD,
所以EF∥BD(三角形中位線的性質(zhì))…(5分)
因?yàn)镋F?平面BCD,BD?平面BCD,
由直線與平面平行的判定定理得EF∥平面BCD…(10分)

點(diǎn)評 本題主要考查了空間中直線與平面平行的證明問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知φ∈(0,π),若函數(shù)f(x)=cos(2x+φ)為奇函數(shù),則φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(-x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為(  )
A.(-2,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.有一個(gè)容量為100的樣本,其頻率分布直方圖如圖所示,已知樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)比樣本數(shù)據(jù)落在區(qū)間[8,10)內(nèi)的頻數(shù)少12,則實(shí)數(shù)m的值等于( 。
A.0.10B.0.11C.0.12D.0.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某百貨公司1~6月份的銷售量x與利潤y的統(tǒng)計(jì)數(shù)據(jù)如表:
月份123456
銷售量x(萬件)1011131286
利潤y(萬元)222529261612
(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過2萬元,則認(rèn)為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$)=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,四邊形ABCD是正方形,延長CD至E,使得DE=CD,若點(diǎn)P為BC的中點(diǎn),且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,則λ+μ=( 。
A.3B.2C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個(gè)不同的非零實(shí)根x1,x2
(1)求證:x1+x2<-2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+3a-λb=0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.作圖并求值域,單調(diào)區(qū)間:y=|x-2|-|x+2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,CA=CB,側(cè)面ABB1A1是邊長為2的正方形,點(diǎn)E,F(xiàn)分別在線段AAl,A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF,M為AB中點(diǎn)
( I)證明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案