分析 (Ⅰ)推導(dǎo)出Rt△EAM∽Rt△FA1E,從而EF⊥ME,又EF⊥CE,由此能證明EF⊥平面CEM.
(Ⅱ)設(shè)線段A1B1中點(diǎn)為N,連結(jié)MN,推導(dǎo)出MC,MA,MN兩兩垂直,建空間直角坐標(biāo)系,利用向量法能求出直線AC1與平面CEF所成角的正弦值.
解答 證明:(Ⅰ)在正方形ABB1A1中,A1E=$\frac{3}{2}$,AM=1,
在Rt△EAM和Rt△FA1E中,$\frac{AE}{{A}_{1}F}=\frac{AM}{{A}_{1}E}=\frac{3}{2}$,
又∠EAM=∠FA1E=$\frac{π}{2}$,∴Rt△EAM∽Rt△FA1E,
∴∠AEM=∠A1FE,∴EF⊥EM,
又EF⊥CE,ME∩CE=E,∴EF⊥平面CEM.
解:(Ⅱ)在等腰三角形△CAB中,
∵CA⊥CB,AB=2,∴CA=CB=$\sqrt{2}$,且CM=1,
設(shè)線段A1B1中點(diǎn)為N,連結(jié)MN,由(Ⅰ)可證CM⊥平面ABB1A1,
∴MC,MA,MN兩兩垂直,
建立如圖所示的空間直角坐標(biāo)系,
則C(1,0,0),E(0,1,$\frac{1}{2}$),F(xiàn)(0,$\frac{1}{4}$,2),A(0,1,0),C1(1,0,2),
$\overrightarrow{CE}$=(-1,1,$\frac{1}{2}$),$\overrightarrow{EF}$=(0,-$\frac{3}{4}$,$\frac{3}{2}$),$\overrightarrow{A{C}_{1}}$=(1,-1,2),
設(shè)平面CEF的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=-x+y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{EF}=-\frac{3}{4}y+\frac{3}{2}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(5,4,2),
設(shè)直線AC1與平面CEF所成角為θ,
則sinθ=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{n}|}$=$\frac{\sqrt{30}}{18}$,
∴直線AC1與平面CEF所成角的正弦值為$\frac{\sqrt{30}}{18}$.
點(diǎn)評 本題考查線面垂直的證明,考查線面角的正弦值求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分且不必要條件 | B. | 必要且不充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y-1=0 | B. | x-y=0 | C. | x-y-$\sqrt{3}$=0 | D. | x-y-2=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com