7.函數(shù)f(x)=$\sqrt{{2^x}-1}$+lg(1-x)的定義域為[0,1).

分析 由根式內部的代數(shù)式大于等于0,對數(shù)式的真數(shù)大于0,聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{{2}^{x}-1≥0}\\{1-x>0}\end{array}\right.$,得0≤x<1.
∴函數(shù)f(x)=$\sqrt{{2^x}-1}$+lg(1-x)的定義域為[0,1).
故答案為:[0,1).

點評 本題考查函數(shù)的定義域及其求法,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={$\frac{1}{2i}$,i2,|5i2|,$\frac{1+{i}^{2}}{i}$,-$\frac{{i}^{2}}{2}$},則集合A∩R+的子集個數(shù)為( 。
A.8B.7C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知tanα,tanβ是方程x2-4x-2=0的兩個實根,求cos2(α+β)+2sin(α+β)cos(α+β)-2sin2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.直角坐標系xOy中,點A坐標為(-2,0),點B坐標為(4,3),點C坐標為(1,-3),且$\overrightarrow{AM}$=t$\overrightarrow{AB}$(t∈R).
(1)若CM⊥AB,求t的值;
(2)當0≤t≤1時,求直線CM的斜率k和傾斜角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知定義在R上的二次函數(shù)f(x)滿足:f(x)=-x2+bx+c,且f(x)=f(1-x).對于數(shù)列{an},若a1=0,an+1=f(an)(n∈N*
(1)求數(shù)列{an}是單調遞減數(shù)列的充要條件;
(2)求c的取值范圍,使數(shù)列{an}是單調遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.一條長椅上有9個座位,3個人坐,若相鄰兩人之間至少有2個空椅子,共有60種不同的坐法.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)時,f(x)=2x,則f(log220)=( 。
A.1B.$\frac{4}{5}$C.-1D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列對于平面α、β、γ和直線a、b、l的說法錯誤的是( 。
A.若a∥α,b∥α,則a不一定平行于b
B.若α不垂直于β,則α內一定不存在直線垂直于β
C.若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ
D.若α⊥β,則α內一定不存在直線平行于β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-y≥0\end{array}$,則z=$\sqrt{{{(x+4)}^2}+{{(y-4)}^2}}$的最大值和最小值分別為( 。
A.$36+16\sqrt{2}$,32B.$4\sqrt{2}+2$,$4\sqrt{2}$C.$36+16\sqrt{2}$,$4\sqrt{2}$D.$36+16\sqrt{2}$,36

查看答案和解析>>

同步練習冊答案