分析 (1)不等式f(x)>0的解集為{x|x>2或x<1},所以與之對應的二次方程ax2-bx+2=0的兩個根為1,2,由韋達定理可得a和b的值;
(2)若b=2a+1,對任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,則g(a)=a(x2-2x)-x+2中$\left\{\begin{array}{l}g(1)>0\\ g(\frac{1}{2})>0\end{array}\right.$,解得答案.
解答 解:(1)不等式f(x)>0的解集為{x|x>2或x<1},
所以與之對應的二次方程ax2-bx+2=0的兩個根為1,2,
由韋達定理得:a=1,b=3 …(4分)
(2)若b=2a+1,對任意a∈[$\frac{1}{2}$,1],
則f(x)=ax2-(2a+1)x+2.
令g(a)=a(x2-2x)-x+2,
若對任意a∈[$\frac{1}{2}$,1],f(x)>0恒成立,
則$\left\{\begin{array}{l}g(1)>0\\ g(\frac{1}{2})>0\end{array}\right.$,即$\left\{\begin{array}{l}{x}^{2}-3x+2>0\\{\frac{1}{2}x}^{2}-2x+2>0\end{array}\right.$,…(8分)
解得:x>2或x<1…(10分)
點評 本題考查的知識點是二次函數的圖象和性質,熟練掌握二次函數的圖象和性質,是解答的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 50 $\sqrt{2}$m | B. | 100 $\sqrt{2}$m | C. | 100($\sqrt{3}$+1)m | D. | 50($\sqrt{3}$+1)m |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com