(本題14分)已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.
(1)求動(dòng)圓的圓心的軌跡方程;
(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),,與雙曲線 交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
(14分)解:(1)圓, 圓心的坐標(biāo)為,半徑.
∵,
∴點(diǎn)在圓內(nèi).
設(shè)動(dòng)圓的半徑為,圓心為,依題意得,且,
即.
∴圓心的軌跡是中心在原點(diǎn),以兩點(diǎn)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,設(shè)其方程為
, 則.
∴.
∴所求動(dòng)圓的圓心的軌跡方程為.
(2) 由 消去化簡(jiǎn)整理得:.
設(shè),,則.
△. ①
由 消去化簡(jiǎn)整理得:.
設(shè),則,
△. ②
∵,
∴,即,
∴.
∴或.
解得或.
當(dāng)時(shí),由①、②得 ,
∵Z,
∴的值為 ,,;
當(dāng),由①、②得 ,
∵Z,
∴.
∴滿(mǎn)足條件的直線共有9條.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆陜西省師大附中、西工大附中高三第七次聯(lián)考文數(shù) 題型:解答題
(本題14分)
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿(mǎn)足其中O是坐標(biāo)原點(diǎn),是參數(shù).
(I)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類(lèi)型;
(Ⅱ) 當(dāng)時(shí),求的最大值和最小值;
(Ⅲ) 如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率滿(mǎn)足求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省揭陽(yáng)市高二上學(xué)期期末檢測(cè)數(shù)學(xué)理卷 題型:解答題
本題14分)已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.
(1)求動(dòng)圓的圓心的軌跡方程;
(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),,與雙曲線 交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)
已知?jiǎng)訄A過(guò)定點(diǎn)P(1,0)且與定直線相切,點(diǎn)C在上.
(Ⅰ)求動(dòng)圓圓心M的軌跡方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P且斜率為的直線與曲線交于A、B兩點(diǎn).問(wèn)直線上是否存在點(diǎn)C ,使得是以為直角的直角三角形?如果存在,求出點(diǎn)C的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省揭陽(yáng)市第一中學(xué)高二上學(xué)期期末檢測(cè)數(shù)學(xué)理卷 題型:解答題
本題14分)已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.
(1)求動(dòng)圓的圓心的軌跡方程;
(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),,與雙曲線 交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com