定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b(x∈R).已知
ON
OA
+(1-λ)
OB
,若|
MN
|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x2-3x+2在[1,3]上k階線性相似,則實(shí)數(shù)k的取值范圍為
 
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:A(1,0),B(3,2).可得M(3-2λ,4λ2-6λ+2).
ON
OA
+(1-λ)
OB
=(3-2λ,2-2λ),得到
MN
=(0,-4λ2+4λ).由于函數(shù)y=x2-3x+2在[1,3]上k階線性相似,因此|
MN
|≤k恒成立,于是k≥|4λ2-4λ|max.由于0≤λ≤1,即可得出|4λ2-4λ|max
解答: 解:A(1,0),B(3,2).
∴xM=λ+3(1-λ)=3-2λ,yM=(3-2λ)2-3(3-2λ)+2=4λ2-6λ+2.
∴M(3-2λ,4λ2-6λ+2).
ON
OA
+(1-λ)
OB
=λ(1,0)+(1-λ)(3,2)=(3-2λ,2-2λ),
MN
=(0,-4λ2+4λ).
∵函數(shù)y=x2-3x+2在[1,3]上k階線性相似,
∴|
MN
|≤k恒成立,∴k≥|4λ2-4λ|max
∵0≤λ≤1,∴|4λ2-4λ|max=1.
則實(shí)數(shù)k的取值范圍為k≥1.
故答案為:[1,+∞).
點(diǎn)評:本題考查了新定義、向量的線性運(yùn)算、模的計(jì)算公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式:
1+0.1
2+0.1
1
2
0.2+
3
0.5+
3
0.2
0.5
,
2
+7
3
+7
2
3
72+π
101+π
72
101
…請你根據(jù)上述特點(diǎn),提煉出一個(gè)一般性命題(寫出已知,求證),并用分析法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面是計(jì)算應(yīng)納稅所得額的算法過程,其算法如下:
第一步 輸入工資x(注x<=5000);
第二步 如果x<=800,那么y=0;如果800<x<=1300,那么y=0.05(x-800);
  否則 y=25+0.1(x-1300)
第三步 輸出稅款y,結(jié)束.
請寫出該程序框圖和程序.(注意:程序框圖與程序必須對應(yīng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′;
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π
12
)=0;
③若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),則g′(2013)=2012;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件;
⑤函數(shù)f(x)=
sinx
2+cosx
的單調(diào)遞增區(qū)間是(2kπ-
3
,2kπ+
3
)(k∈Z).
其中真命題為
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2-ax-a>0的解集為(-∞,+∞),則實(shí)數(shù)a的取值范圍是
 
;若關(guān)于x的不等式x2-ax-a≤-3的解集不是空集,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x>0,y>0,2x+y=2xy-3,則xy的最小值為
 
,此時(shí)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,-1),
b
=(λ,2),
a
b
平行,則λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(7,1),B(1,4),曲線ax-y=0與線段AB交于C,且
AC
+2
BC
=
0
,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位射擊選手射擊10次所得成績的平均數(shù)相同,經(jīng)計(jì)算得各自成績的標(biāo)準(zhǔn)差分別為s=1.29,s=1.92,則
 
成績穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊答案