已知函數(shù)f(x)=ex-ax,其中e為自然對數(shù)的底數(shù),a為常數(shù).
(1)若對函數(shù)f(x)存在極小值,且極小值為0,求a的值;
(2)若對任意x∈[0,
π
2
],不等式f(x)≥ex(1-sinx)恒成立,求a的取值范圍.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:導數(shù)的綜合應用
分析:(1)求導函數(shù),對a討論,確定函數(shù)的單調(diào)性,利用函數(shù)f(x)存在極小值,且極小值為0,可求a的值;
(2)對任意x∈[0,
π
2
],不等式f(x)≥ex(1-sinx)恒成立,等價于對任意x∈[0,
π
2
],不等式exsinx-ax≥0恒成立,構(gòu)造新函數(shù),分類討論,確定函數(shù)的單調(diào)性,即可求a的取值范圍.
解答: 解:(1)∵f(x)=ex-ax,∴f′(x)=ex-a,
當a≤0時,f′(x)>0,函數(shù)在R上是增函數(shù),從而函數(shù)不存在極值,不合題意;
當a>0時,由f′(x)>0,可得x>lna,由f′(x)<0,可得x<lna,∴x=lna為函數(shù)的極小值點,
由已知,f(lna)=0,即lna=1,∴a=e;
(2)不等式f(x)≥ex(1-sinx),即exsinx-ax≥0,
設g(x)=exsinx-ax,則g′(x)=ex(sinx+cosx)-a,g″(x)=2excosx,
x∈[0,
π
2
]時,g″(x)≥0,則g′(x)在x∈[0,
π
2
]時為增函數(shù),∴g′(x)=g′(0)=1-a.
①1-a≥0,即a≤1時,g′(x)>0,g(x)在x∈[0,
π
2
]時為增函數(shù),∴g(x)min=g(0)=0,此時g(x)≥0恒成立;
②1-a<0,即a>1時,存在x0∈[0,
π
2
],使得g′(x0)<0,從而x∈(0,x0)時,g′(x)<0,∴g(x)在[0,x0]上是減函數(shù),
∴x∈(0,x0)時,g(x)<g(0)=0,不符合題意.
綜上,a的取值范圍是(-∞,1].
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性與極值,考查分類討論的數(shù)學思想,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+b
x2+4
是奇函數(shù)(b∈R),若f(x)<a對一切實數(shù)x都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=3an+2,n∈N*,a1=1,bn=an+1
(1)證明數(shù)列{bn}為等比數(shù)列.
(2)求數(shù)列{an}的通項公式an與前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=x2-kx+k2-k-2的兩個零點分別在區(qū)間(0,1),(1,2),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,滿足a1=1,Sn2-Sn-12=an3(n≥2).
(Ⅰ)求證數(shù)列{an}為等差數(shù)列,并求出其通項公式;
(Ⅱ)對于數(shù)列{an},在每兩個ak與ak+1之間都插入k(k∈N+)個2,使數(shù)列{an}變成一個新數(shù)列{tm},數(shù)列{tm}的前m項和為Tm,若Tm>2014,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是自治區(qū)環(huán)境監(jiān)測網(wǎng)從8月21日至25日五天監(jiān)測到甲城市和乙城市的空氣質(zhì)量指數(shù)數(shù)據(jù),用莖葉圖表示:
(1)試根據(jù)圖的統(tǒng)計數(shù)據(jù)和下面的附表,估計甲城市某一天空氣質(zhì)量等級為2級良的概率;
(2)分別從甲城市和乙城市的統(tǒng)計數(shù)據(jù)中任取一個,試求這兩個城市空氣質(zhì)量等級相同的概率.
附:國家環(huán)境標準制定的空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應關(guān)系如下表:
空氣質(zhì)量指數(shù)0-5051-100101-150151-200
空氣質(zhì)量等級1級優(yōu)2級良3級輕度污染4級中度污染

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A.若不等式|2a-1|≤|x+
1
x
|對一切非零實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

B.如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
 

C.在平面直角坐標系xOy中,已知圓C:
x=5cosθ-1
y=5sinθ+2
(θ為參數(shù))和直線l:
x=4t+6
y=-3t-2
(t為參數(shù)),則直線l截圓C所得弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心為直線x-y-1=0與直線2x-y-1=0的交點,直線3x+4y-11=0與圓C相交于A,B兩點,且AB=6,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A是平面上形如(k,k3)=(k=-1,0,1,2,3)的點構(gòu)成的集合,三點P,M,N是集合A中的元素,則以P,M,N為頂點,共可構(gòu)成三角形的個數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

同步練習冊答案