一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b噸.經(jīng)市場調(diào)查后得到如下規(guī)律:若對產(chǎn)品進(jìn)行電視廣告的宣傳,每天的銷售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).

(1)試寫出該產(chǎn)品每天的銷售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?

(1);
(2)至少需4次

解析試題分析:(1)設(shè)電視廣告播放量為每天i次時,該產(chǎn)品的銷售量為si(0≤i≤n,)根據(jù)循環(huán)體可得再用數(shù)列中的累加法求得sn
(2)“要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%”根據(jù)(1)則有,或通過驗證得到結(jié)果.
試題解析:(1)解:設(shè)電視廣告播放量為每天i次時,該產(chǎn)品的銷售量為
于是當(dāng)時,
          5分
所以,該產(chǎn)品每天銷售量S(噸)與電視廣告播放量n(次/天)的函數(shù)關(guān)系式為
      7分
(2)由題意,有所以,要使該產(chǎn)品的銷售量比不做電視廣告時的銷售量增加90%,則每天廣告的播放量至少需4次.      12分
考點:1.考查函數(shù)模型的建立和應(yīng)用;2.程序框圖;3.累加法和指數(shù)不等式的解法

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),且的解集是(1,5).
(l)求實數(shù)a,c的值;
(2)求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

相關(guān)部門對跳水運動員進(jìn)行達(dá)標(biāo)定級考核,動作自選,并規(guī)定完成動作成績在八分及以上的定為達(dá)標(biāo),成績在九分及以上的定為一級運動員. 已知參加此次考核的共有56名運動員.
(1)考核結(jié)束后,從參加考核的運動員中隨機抽取了8人,發(fā)現(xiàn)這8人中有2人沒有達(dá)標(biāo),有3人為一級運動員,據(jù)此請估計此次考核的達(dá)標(biāo)率及被定為一級運動員的人數(shù);
(2)經(jīng)過考核,決定從其中的A、B、C、D、E五名一級運動員中任選2名參加跳水比賽(這五位運動員每位被選中的可能性相同). 寫出所有可能情況,并求運動員E被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實數(shù),記函數(shù)的最大值為.
(1)設(shè),求的取值范圍,并把表示為的函數(shù)
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)解不等式:;
(2)已知集合,.若,求實數(shù)的取值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時,造成堵塞,此時車流速度為;當(dāng)時,車流速度為千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(1)當(dāng)時,求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1) 當(dāng)時,函數(shù)恒有意義,求實數(shù)a的取值范圍;
(2) 是否存在這樣的實數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

工廠生產(chǎn)某種產(chǎn)品,次品率與日產(chǎn)量(萬件)間的關(guān)系為常數(shù),且),已知每生產(chǎn)一件合格產(chǎn)品盈利元,每出現(xiàn)一件次品虧損元.
(1)將日盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);
(2)為使日盈利額最大,日產(chǎn)量應(yīng)為多少萬件?(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為10萬元,每生產(chǎn)1千件該產(chǎn)品需另投入2.7萬元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該公司在這一產(chǎn)品的產(chǎn)銷過程中所獲利潤最大

查看答案和解析>>

同步練習(xí)冊答案