19.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,a1=b1=1,且b3S3=36,b2S2=8.
(1)求數(shù)列{an}和{bn}通項(xiàng)公式;
(2)若an<an+1,求數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項(xiàng)和Tn

分析 (1)利用數(shù)列的通項(xiàng)公式以及已知條件列出方程組,求出公差與公比,然后求解通項(xiàng)公式.
(2)利用錯(cuò)位相減法轉(zhuǎn)化求解數(shù)列的和即可.

解答 解:(1)設(shè){an}是公差為d的等差數(shù)列,{bn}是公比為q的等比數(shù)列.
由題意$\left\{\begin{array}{l}{q^2}(3+3d)=36\\ q(2+d)=8\end{array}\right.⇒\left\{\begin{array}{l}d=2\\ q=2\end{array}\right.$或$\left\{\begin{array}{l}d=-\frac{2}{3}\\ q=6\end{array}\right.$,
所以an=2n-1,${b_n}={2^{n-1}}$或${a_n}=\frac{1}{3}(5-2n)$,${b_n}={6^{n-1}}$.
(2)若an<an+1,由(1)知an=2n-1,
∴$\frac{1}{anan+1}=\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$
∴${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+$…$+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{n}{2n+1}$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列求和,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若-1<x<4是x>2m2-3的充分不必要條件,則實(shí)數(shù)m的取值范圍是( 。
A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知兩定點(diǎn)A(-3,0)和B(3,0),動(dòng)點(diǎn)P(x,y)在直線l:y=-x+5上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為( 。
A.$\frac{{3\sqrt{17}}}{17}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{{3\sqrt{17}}}{34}$D.$\frac{{2\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$cos(\frac{3}{2}π+α)={log_8}\frac{1}{4}$,且$α∈(-\frac{π}{2},0)$,求tan(2π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖邊長為2的正方體ABCD-A1B1C1D1中,M、N分別是CC1,B1C1的中點(diǎn).
(1)證明;A1N∥平面AMD1
(2)求二面角M-AD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列結(jié)論:正確的序號(hào)是①③④.
①△ABC中,若A>B則一定有sinA>sinB成立;
②數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}-2n+1$,則數(shù)列{an}是等差數(shù)列;
③銳角三角形的三邊長分別為3,4,a,則a的取值范圍是$\sqrt{7}<a<5$;
④等差數(shù)列數(shù)列{an}的前n項(xiàng)和為Sn,已知a7+a8+a9+a10=24,則S16=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,BC=20,tanB•tanC=$\frac{1}{4}$,AC=4$\sqrt{2}$,則cosA=$-\frac{3\sqrt{34}}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,A=30°,則$\sqrt{3}sinA-cos({B+C})$的值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知A={x|x2-2x-3<0},B={x|x2-5x+6<0}.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求x2+ax-b<0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案