9.已知A={x|x2-2x-3<0},B={x|x2-5x+6<0}.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求x2+ax-b<0的解集.

分析 (1)先化簡A,B再按照交集的定義求解計(jì)算.
(2)由(1)得A∩B={x|-1<x<2},所以-1,2是方程x2+ax+b=0的兩根,求出a,b確定出ax2+x-b<0,再求解.

解答 解:(1)由題意得:A={x|-1<x<3},B={x|2<x<3},
∴A∩B={x|2<x<3}.
(2)由題意得:2,3是方程x2+ax+b=0的兩根
所以 $\left\{\begin{array}{l}{2+3=-a}\\{2×3=b}\end{array}\right.$,解之得 $\left\{\begin{array}{l}{a=-5}\\{b=6}\end{array}\right.$,
所以x2-5x-6<0,其解集為{x|-1<x<6}.

點(diǎn)評 本題考查二次不等式求解,考查數(shù)形結(jié)合的思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,a1=b1=1,且b3S3=36,b2S2=8.
(1)求數(shù)列{an}和{bn}通項(xiàng)公式;
(2)若an<an+1,求數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=ax3-x存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知橢圓x2+4y2=1的長軸長為(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅造的一種標(biāo)準(zhǔn)量器--商鞅銅方升,其三視圖如圖所示(單位:寸),若π取為3,其體積為12.6(立方升),則三視圖中x的為( 。
A.3.4B.4.0C.3.8D.3.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,等腰三角形ABC中,∠B=∠C,D在BC上,∠BAD大小為α,∠CAD大小為β.
(1)若$α=\frac{π}{4},β=\frac{π}{3}$,求$\frac{BD}{DC}$;
(2)若$\frac{BD}{DC}=\frac{1}{2},β=α+\frac{π}{3}$,求∠B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=$\sqrt{3}$AB,若四面體P-ABC 的體積為$\frac{3}{2}$,求球的表面積(  )
A.B.12πC.8$\sqrt{3}$πD.12$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線的方程是y=$\frac{\sqrt{3}}{2}$x,且雙曲線的一個焦點(diǎn)在拋物線y2=4$\sqrt{7}$x的準(zhǔn)線上,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{21}-\frac{{y}^{2}}{28}$=1B.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{28}-\frac{{y}^{2}}{21}$=1D.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.計(jì)算:sin187°cos52°+cos7°sin52°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案