20.要得到函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象,只要將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{4}$B.向右平移$\frac{π}{4}$C.向左平移$\frac{π}{8}$D.向右平移$\frac{π}{8}$

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:將函數(shù)y=sin2x的圖象向右平移$\frac{π}{8}$個(gè)單位,則y=sin2(x-$\frac{π}{8}$)=sin(2x-$\frac{π}{4}$).
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若實(shí)數(shù)x,y滿足x2+y2-2x+4y=0,則|x-2y+6|的最大值為(  )
A.11B.12C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)O在△ABC的內(nèi)部,D為AB的中點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=0,則△ABC的面積與△AOC的面積的比值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.從某校高三的學(xué)生中隨機(jī)抽取了100名學(xué)生,統(tǒng)計(jì)了某次數(shù)學(xué)?伎荚嚦煽(jī)?nèi)绫恚?br />
分組頻數(shù)頻率
[100,110)50.050
[110,120)0.200
[120,130)35
[130,140)300.300
[140,150]100.100
(1)請(qǐng)?jiān)陬l率分布表中的①、②位置上填上相應(yīng)的數(shù)據(jù),并在給定的坐標(biāo)系中作出
這些數(shù)據(jù)的頻率分布直方圖,再根據(jù)頻率分布直方圖估計(jì)這100名學(xué)生的平均成績(jī);
(2)從這100名學(xué)生中,采用分層抽樣的方法已抽取了20名同學(xué)參加“希望杯數(shù)學(xué)競(jìng)賽”,現(xiàn)需要選取其中3名同學(xué)代表高三年級(jí)到外校交流,記這3名學(xué)生中“期中考試成績(jī)低于120分”的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若拋物線y2=2px的焦點(diǎn)與橢圓$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1的右焦點(diǎn)重合,則p的值為( 。
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知i是虛數(shù)單位,若z1=2+i,z2=1-i,則$z=\frac{z_1}{z_2}$在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若奇函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),又f(-3)=0,則不等式f(x)<0的解集為(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(0,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若tanα=3,tan(α+β)=2,則tanβ=(  )
A.$-\frac{1}{7}$B.$-\frac{1}{6}$C.$-\frac{5}{7}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中編號(hào)最小的兩個(gè)編號(hào)分別為007,032,則樣本中最大的編號(hào)應(yīng)該為482.

查看答案和解析>>

同步練習(xí)冊(cè)答案