9.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為3π+4.

分析 由幾何體的俯視圖是半圓,得其原圖形是底面半徑為1,高為2的半圓柱,如圖,該幾何體的表面積等于兩底半圓面的面積加上以1為底面半徑,以2為高的圓柱側(cè)面積的一半,加上正視圖的面積.

解答 解:由幾何體的三視圖可得其原圖形是底面半徑為1,高為2的半圓柱,
如圖,該幾何體的表面積等于兩底半圓面的面積加上以1為底面半徑,
以2為高的圓柱側(cè)面積的一半,加上正視圖的面積.
所以該幾何體的表面積為π+π•1•2+2•2=3π+4.
故答案為3π+4.

點(diǎn)評(píng) 本題考查了由三視圖求表面積,解答此題的關(guān)鍵是還原原幾何體,由三視圖還原原幾何體首先看俯視圖,結(jié)合主視圖和左視圖得原幾何體,此題屬中低檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)(x∈N)表示x除以2的余數(shù),函數(shù)g(x)(x∈N)表示x除以3的余數(shù),則對(duì)任意的x∈N,給出以下式子:①f(x)≠g(x);②f(2x)=0;③g(2x)=2g(x);④f(x)+f(x+3)=1.其中正確的式子編號(hào)是②④.(寫出所有符合要求的式子編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=bsinx-ax2+2a-eb,g(x)=ex,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=0時(shí),討論函數(shù)F(x)=f(x)g(x)的單調(diào)性;
(2)求證:對(duì)任意a∈[$\frac{1}{2}$,1],存在b∈(-∞,1],使得f(x)在區(qū)間[0,+∞)上恒有f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={1,3},集合B={3,4},則A∪B等于( 。
A.{1}B.{3}C.{1,3,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列關(guān)于算法的描述正確的是( 。
A.算法與求解一個(gè)問題的方法相同
B.算法只能解決一個(gè)問題,不能重復(fù)使用
C.算法過程要一步一步執(zhí)行
D.有的算法執(zhí)行完以后,可能沒有結(jié)果

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}}$+(1.5)2+($\sqrt{2}$×$\root{4}{3}$)4;
(2)$\frac{{1g\sqrt{27}+1g8-1g\sqrt{1000}}}{{\frac{1}{2}1g0.3+1g2}}+{(\sqrt{5}-2)^0}+{0.027^{-\frac{1}{3}}}×{(-\frac{1}{3})^{-2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(1,t),若$\overrightarrow{a}$∥$\overrightarrow$,則t=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=4x,直線l過焦點(diǎn)且與拋物線交于A(x1,y1),B(x2,y2)兩點(diǎn),x1+x2=3,則AB中點(diǎn)到y(tǒng)軸的距離為( 。
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.拋物線y2=-4x的通徑長(zhǎng)等于4.

查看答案和解析>>

同步練習(xí)冊(cè)答案