A. | [2,18) | B. | ($\frac{3(\sqrt{5}-1)}{2}$,2] | C. | [2,$\frac{27-9\sqrt{5}}{2}$) | D. | (2,9-3$\sqrt{5}$) |
分析 由已知a+b+c=6,且b2=ac,由基本不等式及三角形中的邊角關(guān)系求得b的范圍得到b的范圍,代入數(shù)量積公式可得$\overrightarrow{BA}$•$\overrightarrow{BC}$=-(b+3)2+27.則$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范圍可求.
解答 解:由題意可得a+b+c=6,且b2=ac,
∴b=$\sqrt{ac}$≤$\frac{a+c}{2}$=$\frac{6-b}{2}$,從而0<b≤2.
再由|a-c|<b,得(a-c)2<b2,(a+c)2-4ac<b2,
∴(6-b)2-4b2<b2,得b2+3b-9>0,
又b>0,解得b>$\frac{3\sqrt{5}-3}{2}$,
∴$\frac{3\sqrt{5}-3}{2}$<b≤2,
∵cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$,
∴$\overrightarrow{BA}$•$\overrightarrow{BC}$=ac•cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2}$=$\frac{(a+c)^{2}-2ac-^{2}}{2}$=$\frac{(6-b)^{2}-3^{2}}{2}$=-(b+3)2+27.
則2≤$\overrightarrow{BA}$•$\overrightarrow{BC}$<$\frac{27-9\sqrt{5}}{2}$.
故選:C.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查余弦定理的應(yīng)用,考查計(jì)算能力,屬難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -e | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2-$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com