A. | 0 | B. | 2-$\sqrt{2}$ | C. | 1 | D. | $\sqrt{2}$ |
分析 根據(jù)圖象求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)即可得到結(jié)論.
解答 解:由圖象可得:A=2,周期T=8,
∴$\frac{2π}{8}=ω$,即ω=$\frac{π}{4}$.
圖象過點(diǎn)(2,2),
即2=2cos($\frac{π}{4}×2+$φ)=-2sinφ
得:φ=-$\frac{π}{2}$+2kπ.
則f(x)=2cos($\frac{π}{4}x-\frac{π}{2}$)=2sin$\frac{π}{4}x$.
∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)=0.
那么:f(1)+f(2)+…+f(2017)=f(1)=2sin$\frac{π}{4}$=$\sqrt{2}$.
故選:D.
點(diǎn)評 本題考查了圖象求出三角函數(shù)的解析式,和周期函數(shù)的計(jì)算.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}-\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | -$\frac{\sqrt{6}+\sqrt{2}}{4}$ | D. | $\frac{\sqrt{3}+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不平行的兩條棱所在直線所成的角為60°或90° | |
B. | 四邊形AECF為正方形 | |
C. | 點(diǎn)A到平面BCE的距離為$\frac{{\sqrt{6}}}{4}$ | |
D. | 該八面體的頂點(diǎn)在同一個(gè)球面上 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,18) | B. | ($\frac{3(\sqrt{5}-1)}{2}$,2] | C. | [2,$\frac{27-9\sqrt{5}}{2}$) | D. | (2,9-3$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com