已知甲、乙、丙等6人.
(1)這6人同時(shí)參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時(shí)參加6項(xiàng)不同的活動(dòng),每項(xiàng)活動(dòng)限1人參加,其中甲不參加第一項(xiàng)活動(dòng),乙不參加第三項(xiàng)活動(dòng),共有多少種不同的安排方法?
(3)這6人同時(shí)參加4項(xiàng)不同的活動(dòng),求每項(xiàng)活動(dòng)至少有1人參加的概率.
(1)分別求出這6個(gè)人只去1個(gè)人、只去2個(gè)人、只去3個(gè)人、只去4個(gè)人、只去5個(gè)人,6的人全去的方法數(shù),
分別為
C16
、
C26
、
C36
C46
、
C56
、
C66
,
故共有
C16
+
C26
+
C36
+
C46
+
C56
+
C66
=26-1=63 種方法.
(2)所有的安排方法共有
A66
種,其中甲參加第一項(xiàng)活動(dòng)的方法有
A55
種,乙參加第三項(xiàng)活動(dòng)的方法有
A55
種,
甲參加第一項(xiàng)活動(dòng)而且乙參加第三項(xiàng)活動(dòng)的方法有
A44
種,
故甲不參加第一項(xiàng)活動(dòng)且乙不參加第三項(xiàng)活動(dòng)的不同的安排方法有
A66
-2
A55
+
A44
=720-240+24=504 種.
(3)這6人同時(shí)參加4項(xiàng)不同的活動(dòng),每項(xiàng)活動(dòng)至少有1人參加,若各項(xiàng)活動(dòng)的人數(shù)為3、1、1、1時(shí),有
C36
A44
種方法,
若各項(xiàng)活動(dòng)的人數(shù)為2、2、1、1,則有
1
2
C26
C24
A44
種方法,
故滿足條件的方法數(shù)為 (
C36
+
1
2
C26
C24
)•
A44
=65×24種.
而所有的安排方法共有 46 種,故每項(xiàng)活動(dòng)至少有1人參加的概率為
65×24
46
=
195
512
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知甲、乙、丙等6人.
(1)這6人同時(shí)參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時(shí)參加6項(xiàng)不同的活動(dòng),每項(xiàng)活動(dòng)限1人參加,其中甲不參加第一項(xiàng)活動(dòng),乙不參加第三項(xiàng)活動(dòng),共有多少種不同的安排方法?
(3)這6人同時(shí)參加4項(xiàng)不同的活動(dòng),求每項(xiàng)活動(dòng)至少有1人參加的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知挑選空軍飛行學(xué)員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需過(guò)“五關(guān)”--目測(cè)、初檢、復(fù)檢、文考、政審等.若某校甲、乙、丙三個(gè)同學(xué)都順利通過(guò)了前兩關(guān),有望成為光榮的空軍飛行學(xué)員.根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過(guò)復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過(guò)文考關(guān)的概率分別是0.6,0.5,0.4,通過(guò)政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過(guò)復(fù)檢的概率;
(2)設(shè)通過(guò)最后三關(guān)后,能被錄取的人數(shù)為X,求隨機(jī)變量X的期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二下期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知甲、乙、丙等6人 .

(1)這6人同時(shí)參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的去法?

(2)這6人同時(shí)參加6項(xiàng)不同的活動(dòng),每項(xiàng)活動(dòng)限1人參加,其中甲不參加第一項(xiàng)活動(dòng),乙不參加第三項(xiàng)活動(dòng),共有多少種不同的安排方法?

(3)這6人同時(shí)參加4項(xiàng)不同的活動(dòng),求每項(xiàng)活動(dòng)至少有1人參加的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市萬(wàn)里國(guó)際學(xué)校高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知甲、乙、丙等6人.
(1)這6人同時(shí)參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的去法?
(2)這6人同時(shí)參加6項(xiàng)不同的活動(dòng),每項(xiàng)活動(dòng)限1人參加,其中甲不參加第一項(xiàng)活動(dòng),乙不參加第三項(xiàng)活動(dòng),共有多少種不同的安排方法?
(3)這6人同時(shí)參加4項(xiàng)不同的活動(dòng),求每項(xiàng)活動(dòng)至少有1人參加的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案