分析 (1)由n,an,Sn成等差數(shù)列,可得n+Sn=2an,n=1時(shí),1+a1=2a1,解得a1.n≥2時(shí)可得:n-1+Sn-1=2an-1,相減可得:an+1=2(an-1+1),利用等比數(shù)列通項(xiàng)公式即可得出.
(2)bn=an•log2(an+1)=n(2n-1)=n•2n-n,令數(shù)列{n•2n}的前n項(xiàng)和為An=2+2×22+3×23+…+n•2n,利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.
解答 解:(1)∵n,an,Sn成等差數(shù)列,∴n+Sn=2an,n=1時(shí),1+a1=2a1,解得a1=1.
n≥2時(shí)可得:n-1+Sn-1=2an-1,相減可得:an+1=2an-2an-1,可得:an+1=2(an-1+1),
∴數(shù)列{an+1}成等比數(shù)列,公比為2,首項(xiàng)為2.
∴an+1=2n,解得an=2n-1.
(2)bn=an•log2(an+1)=n(2n-1)=n•2n-n,
令數(shù)列{n•2n}的前n項(xiàng)和為An=2+2×22+3×23+…+n•2n,
2An=22+2×23+…+(n-1)•2n+n•2n+1,
∴-An=2+22+…+2n-n•2n+1=2×$\frac{{2}^{n}-1}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴An=(n-1)•2n+1+2.
∴數(shù)列{bn}的前n項(xiàng)和Tn=(n-1)•2n+1+2-$\frac{n(n+1)}{2}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、“錯(cuò)位相減法”、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com