已知集合A={x|x2-5x+6≤0},B={x||x+1|≤2x+1},C={x|
2x-3
x+1
<1};
求:(1)(A∪B)∩C;              
(2)(B∩C)∩CBA.
考點:交、并、補集的混合運算
專題:集合
分析:解不等式求出集合A,B,C,進而結合集合交集,并集,補集的定義,可得答案.
解答: 解:∵A={x|x2-5x+6≤0}=[2,3],
B={x||x+1|≤2x+1}=[0,+∞),
C={x|
2x-3
x+1
<1}=(-1,4)…(6分)
(1)(A∪B)∩C=[0,+∞)∩(-1,4)=[0,4).…(9分)
(2)(B∩C)∩CBA=[0,4)∩([0,2)∪(3,+∞))=[0,2)∪(3,4)
點評:本題考查的知識點是集合的交集,并集,補集及其運算,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點M是y=
1
4
x2
上一點,F(xiàn)為拋物線的焦點,A在C:(x-1)2+(y-4)2=1上,則|MA|+|MF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,設S為△ABC的面積,且S=
3
4
(a2+b2-c2).
(1)求角C的大。
(2)當cosA+cosB取得最大值時,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于給定的實數(shù)a、b,定義運算“⊕”:s=a⊕b.若其運算法則如程序框圖所示,則集合{y|y=(1⊕x)•x+(2⊕x),x∈[-2,2]}(注:“•”和“+”表示實數(shù)的乘法和加法運算)的最大元素是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(
x
+1)=x+a,
(1)求函數(shù)f(x)的解析式及定義域;
(2)若 f(x)>0對任意的x>2恒成立,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={0,1,2,3},B={1,3,4},則A∩B的子集個數(shù)為( 。
A、2B、3C、4D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<a<
3
3
且a≠
1
3
,討論方程2-x=logax的解的個數(shù)及解的分布.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C的對邊分別是a,b,c,若a2-b2-c2=
3
bc,A=(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
5
+
y2
4
=1的兩焦點為F1,F(xiàn)2,長軸兩頂點為A1,A2
(1)P是橢圓上一點,且∠F1PF2=30°,求△F1PF2的面積;
(2)過橢圓的左焦點作一條傾斜角為45°的直線l與橢圓交于A,B兩點,求弦長|AB|.

查看答案和解析>>

同步練習冊答案