設(shè)2a=5b=m,且
1
a
+
1
b
=
1
2
,則m=( 。
A、
10
B、10
C、20
D、100
考點:對數(shù)的運算性質(zhì),指數(shù)式與對數(shù)式的互化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得
1
a
+
1
b
=logm2+logm5=logm10=
1
2
,由此能求出結(jié)果.
解答: 解:∵2a=5b=m,且
1
a
+
1
b
=
1
2
,
∴a=log2m,b=log5m,
1
a
+
1
b
=logm2+logm5=logm10=
1
2

∴m 
1
2
=10,解得m=100.
故選:D.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個空間幾何體的三視圖如圖,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知S4=-2,S5=0,則S6=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>2,則方程
1
3
x3-ax2+1=0在(0,2)上恰好有( 。
A、0個根B、1個根
C、2個根D、3個根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)為f′(x),且f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為( 。
A、y=3x+1
B、y=-3x
C、y=-3x+1
D、y=3x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的斜率為
2
,則該雙曲線的離心率等于(  )
A、2
B、
5
2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3+bx2+cx+d(a≠0,x∈R)無極值點,則( 。
A、b2≤3ac
B、b2≥3ac
C、b2<3ac
D、b2>3ac

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正整數(shù)排列如下:則在表中數(shù)字2013出現(xiàn)在(  )
1
2  3  4
5   6  7  8  9
10  11 12 13 14  15  16
A、第44行第78列
B、第45行第78列
C、第44行第77列
D、第45行第77列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由若干個相同的正方體疊成的一個物體,它的主視圖、左視圖、俯視圖從左到右分別如圖所示,則這個物體共有( 。﹤小正方體.
A、7B、11C、12D、14

查看答案和解析>>

同步練習(xí)冊答案