12.某班舉行聯(lián)歡會,原來5個節(jié)目已經(jīng)排定節(jié)目單,開演前又增加兩個節(jié)目,將這兩個節(jié)目插入原節(jié)目單,則不同的插入方法有42 種.

分析 根據(jù)題意,分2種情況討論:①、插入的2個節(jié)目不相鄰,②、插入的2個節(jié)目相鄰,分別求出每一步的情況數(shù)目,由分類計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,要將這兩個節(jié)目插入原來的節(jié)目單中,分2種情況討論:
①、插入的2個節(jié)目不相鄰,
原來的5個節(jié)目形成6個空位,只要在7個空位中選2個空位進行排列
共有A62=30種安排方法;
②、插入的2個節(jié)目相鄰,
將2個節(jié)目看成一個整體,有A22種順序,
在6個空位中選1個空位安排這個整體,
共有C61A22=12種安排方法,
∴符合條件的方法是30+12=42種安排方法,
故答案為:42.

點評 本題考查排列、組合的實際應用,在解題時關鍵是看清題目中包含的兩種情況都合題意,需要不重不漏的寫出這兩種結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)y=sinx的圖象與函數(shù)y=x圖象的交點的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.不等式(3x+1)(1-2x)>0的解集是( 。
A.$\{x|x<-\frac{1}{3}或x>\frac{1}{2}\}$B.$\{x|-\frac{1}{3}<x<\frac{1}{2}\}$C.$\{x|x>\frac{1}{2}\}$D.$\{x|x>-\frac{1}{3}\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2$\sqrt{2}$,動點D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB
(Ⅱ)當OD⊥AB時,求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,內角A,B,C所對的邊分別為a,b,c且2a cosC-c=2b.
(Ⅰ)求角A的大小;
(Ⅱ)若c=$\sqrt{2}$,角B的平分線BD=$\sqrt{3}$,求∠ADB和BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若函數(shù)f(x)=x3-3x+2在區(qū)間(a,-a2+2a+4)上有極小值,則實數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若f(x)為奇函數(shù),且x0是函數(shù)y=f(x)-ex的一個零點,在下列函數(shù)中,-x0一定是其零點的函數(shù)是( 。
A.y=f(-x)•e-x-1B.y=f(x)•e-x+1C.y=f(x)•e-x-1D.y=f(x)•ex+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.數(shù)列{an}中,${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{n{a_n}}}{{({n+1})({n{a_n}+1})}}({n∈{N^*}})$,若不等式$\frac{3}{n^2}+\frac{1}{n}+t{a_n}≥0$恒成立,則實數(shù)t的取值范圍是[-$\frac{15}{2}$,+∞)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若不等式n2-n(λ+1)+7≥λ,對一切n∈N*恒成立,則實數(shù)λ的取值范圍( 。
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

同步練習冊答案