【題目】對于定義在區(qū)間上的函數(shù),若任給,均有,則稱函數(shù)在區(qū)間上是封閉.

1)試判斷在區(qū)間上是否封閉,并說明理由;

2)若函數(shù)在區(qū)間上封閉,求的取值范圍.

【答案】1)不封閉,理由見解析;(2.

【解析】

1)求出二次函數(shù)在區(qū)間上的值域,結(jié)合題中定義判斷即可;

2)將函數(shù)的解析式變形為,分類討論的取值,求得函數(shù)在區(qū)間上的值域,轉(zhuǎn)化為函數(shù)區(qū)間上的值域?yàn)?/span>的子集,由此可求得實(shí)數(shù)的取值范圍.

1

當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以,,

所以,函數(shù)在區(qū)間上的值域?yàn)?/span>

,因此,函數(shù)在區(qū)間上不封閉;

2.

①當(dāng)時(shí),對任意的,

此時(shí),函數(shù)在區(qū)間上封閉;

②當(dāng)時(shí),,此時(shí)函數(shù)在區(qū)間上單調(diào)遞增,

則當(dāng)時(shí),,則,

所以,,解得;

③當(dāng)時(shí),,此時(shí)函數(shù)在區(qū)間上單調(diào)遞減,

則當(dāng)時(shí),,則

所以,,解得.

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的“歐拉線”.在平面直角坐標(biāo)系中作,中,,點(diǎn),點(diǎn),且其“歐拉線”與圓相切,則該圓的直徑為(

A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育與環(huán)保部門聯(lián)合組織該市中學(xué)參加市中學(xué)生環(huán)保知識團(tuán)體競賽,根據(jù)比賽規(guī)則,某中學(xué)選拔出8名同學(xué)組成參賽隊(duì),其中初中學(xué)部選出的3名同學(xué)有2名女生;高中學(xué)部選出的5名同學(xué)有3名女生,競賽組委會將從這8名同學(xué)中隨機(jī)選出4人參加比賽.

)設(shè)選出的4人中恰有2名女生,而且這2名女生來自同一個(gè)學(xué)部為事件,求事件的概率

)設(shè)為選出的4人中女生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時(shí),求證:;

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥平面ABCACBC,DPC中點(diǎn),EAD中點(diǎn),PAAC2,BC1

1)求證:AD⊥平面PBC

2)求PE與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng),求函數(shù)的值域;

2)設(shè)函數(shù),問:當(dāng)取何值時(shí),函數(shù)上為單調(diào)函數(shù);

3)設(shè)函數(shù)的零點(diǎn)為,試討論當(dāng)時(shí),是否存在,若存在請求出的取值范圍.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費(fèi)和年銷售量)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

年宣傳費(fèi)(萬元)

年銷售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式).對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)已知這種產(chǎn)品的年利潤的關(guān)系為若想在年達(dá)到年利潤最大,請預(yù)測年的宣傳費(fèi)用是多少萬元?

附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:,直線l過定點(diǎn)

(1)若直線l與圓C相切,求直線l的方程;

(2)若直線l與圓C相交于P,Q兩點(diǎn),求的面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A.命題,,則

B.,則的逆命題為真命題

C.、為真命題,則為假命題

D.王昌齡《從軍行》中兩句詩黃沙百戰(zhàn)穿金甲,不破樓蘭終不還,后一句中攻破樓蘭回到家鄉(xiāng)的必要條件

查看答案和解析>>

同步練習(xí)冊答案