10.在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=3+\sqrt{5}sinθ\end{array}\right.$(其中θ為參數(shù)).
(Ⅰ) 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程;
( II)直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(其中t為參數(shù)),直線l與曲線C分別交于A,B兩點(diǎn),且$|AB|=2\sqrt{3}$,求直線l的斜率.

分析 (Ⅰ)先把曲線C的參數(shù)方程化為直角坐標(biāo)方程,由此能求出曲線C的極坐標(biāo)方程.
(Ⅱ)求出直線l的直角坐標(biāo)方程為y=tanα•x,圓心C(0,3)到直線的距離d=$\frac{|3|}{\sqrt{1+ta{n}^{2}α}}$,再由$|AB|=2\sqrt{3}$,利用勾股定理求出tan2α=$\frac{7}{2}$,由此能求出直線l的斜率.

解答 解:(Ⅰ)∵曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=3+\sqrt{5}sinθ\end{array}\right.$(其中θ為參數(shù)),
∴曲線C的直角坐標(biāo)方程為x2+(y-3)2=5,即x2+y2-6y+4=0,
∴曲線C的極坐標(biāo)方程為ρ2-6ρsinθ+4=0.
(Ⅱ)∵直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(其中t為參數(shù)),
∴直線l的直角坐標(biāo)方程為y=tanα•x,
圓心C(0,3)到直線的距離d=$\frac{|3|}{\sqrt{1+ta{n}^{2}α}}$,
∵直線l與曲線C分別交于A,B兩點(diǎn),且$|AB|=2\sqrt{3}$,
∴$\sqrt{{r}^{2}-r7tr3ai^{2}}=\frac{|AB|}{2}$,
即$\sqrt{5-\frac{9}{1+ta{n}^{2}α}}$=$\sqrt{3}$,解得tan2α=$\frac{7}{2}$,
∴tanα=±$\frac{\sqrt{14}}{2}$.
∴直線l的斜率為$±\frac{\sqrt{14}}{2}$.

點(diǎn)評(píng) 本題考查圓、直線方程、極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程、點(diǎn)到直線距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.等差數(shù)列{an}的前11項(xiàng)和S11=88,則a3+a6+a9=( 。
A.18B.24C.30D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=lnx-x2-x.
(1)求函數(shù)f(x)的最大值;
(2)若函數(shù)g(x)=af(x)+ax2-3(a∈R)的圖象在點(diǎn)(2,g(2))處的切線與直線x-y=3平行,對(duì)于任意的t∈[1,2],函數(shù)$h(x)={x^3}+{x^2}[{g^'}(x)+\frac{m}{2}]$在區(qū)間(t,4)上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等比數(shù)列{an}的公比是q,首項(xiàng)a1<0,前n項(xiàng)和為Sn,設(shè)a1,a4,a3-a1成等差數(shù)列,若Sk<5Sk-4,則正整數(shù)k的最大值是( 。
A.4B.5C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=blnx+a(a>0,b>0)在x=1處的切線與圓(x-2)2+y2=4相交于A、B兩點(diǎn),并且弦長(zhǎng)|AB|=
2$\sqrt{3}$,則$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$-$\frac{{a}^{2}}{^{2}}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.過(guò)點(diǎn)P(1,2)作直線m,使直線l與點(diǎn)M(2,3)和點(diǎn)N(4,9)距離相等,則直線m的方程為3x-y-1=0或2x-y=0..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)點(diǎn)P(x0,y0)與直線Ax+By+C=0垂直的直線方程是(  )
A.A(x-x0)+B(y-y0)=0B.B(x-x0)+A(y-y0)=0C.A(x-x0)-B(y-y0)=0D.B(x-x0)-A(y-y0)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.據(jù)某市地產(chǎn)數(shù)據(jù)研究顯示,2016年該市新建住宅銷(xiāo)售均價(jià)走勢(shì)如下圖所示,3月至7月房?jī)r(jià)上漲過(guò)快,為抑制房?jī)r(jià)過(guò)快上漲,政府從8月開(kāi)始采用宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)y(萬(wàn)元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程;
(2)若政府不調(diào)控,依此相關(guān)關(guān)系預(yù)測(cè)帝12月份該市新建住宅銷(xiāo)售均價(jià).
參考數(shù)據(jù):$\sum_{i=1}^{5}$xi=25,$\sum_{i=1}^{5}$yi=5.36,$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=0.64;
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說(shuō)法錯(cuò)誤的是( )

A.若直線平面,直線平面,則直線不一定平行于直線

B.若平面不垂直于平面,則內(nèi)一定不存在直線垂直于平面

C.若平面平面,則內(nèi)一定不存在直線平行于平面

D.若平面平面,平面平面,則一定垂直于平面

查看答案和解析>>

同步練習(xí)冊(cè)答案