16.(x2+x+1)(1-x)6展開(kāi)式中x2的系數(shù)為10.

分析 (x2+x+1)(1-x)6=(x2+x+1)(1-6x+${∁}_{6}^{2}{x}^{2}$+…)即可得出.

解答 解:(x2+x+1)(1-x)6=(x2+x+1)(1-6x+${∁}_{6}^{2}{x}^{2}$+…)
展開(kāi)式中x2的系數(shù)為1-6+${∁}_{6}^{2}$=10.
故答案為:10.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=(an-1)(an+2).
(1)求證:不論λ取何值,數(shù)列{an+λan+1}總是等差數(shù)列,并求此數(shù)列的公差;
(2)設(shè)數(shù)列$\{\frac{{(n-1)•{2^n}}}{{n{a_n}}}\}$的前n項(xiàng)和為T(mén)n,試比較Tn與$\frac{{{2^{n+1}}(18-n)-2n-2}}{n+1}$的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=4x2-mx+1在(-∞,-2)上遞減,在[-2,+∞)上遞增,求f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若(cosα+2sinα)2=5,則tanα=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對(duì)白天平均氣溫與某家奶茶店的A品牌飲料銷(xiāo)量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫x(°C)與該奶茶店的A品牌飲料銷(xiāo)量y(杯),得到如下表數(shù)據(jù):
日期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(℃)91012118
銷(xiāo)量y(杯)2325302621
(Ⅰ)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組書(shū)記恰好是相鄰2天數(shù)據(jù)的概率;
(Ⅱ)請(qǐng)根據(jù)所給五組書(shū)記,求出y關(guān)于x的線性回歸方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根據(jù)(Ⅱ)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為7(℃),請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷(xiāo)量.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)M在角θ終邊的延長(zhǎng)線上,且|OM|=2,則M的坐標(biāo)為( 。
A.(2cosθ,2sinθ)B.(-2cosθ,2sinθ)C.(-2cosθ,-2sinθ)D.(2cosθ,-2sinθ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,若sinA:sinB:sinC=2:3:4,則最大角的余弦值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行右面的程序框圖,如果輸入m=72,n=30,則輸出的n是( 。
A.12B.6C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某高中有學(xué)生2000人,其中高一年級(jí)有760人,若從全校學(xué)生中隨機(jī)抽出1人,抽到的學(xué)生是高二學(xué)生的概率為0.37,現(xiàn)采用分層抽(按年級(jí)分層)在全校抽取20人,則應(yīng)在高三年級(jí)中抽取的人數(shù)為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案