7.已知函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖,則f(0)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}+\sqrt{6}}{4}$D.$\frac{\sqrt{3}}{2}$

分析 根據(jù)函數(shù)的圖象求出解析式,再計算f(0)的值.

解答 解:由函數(shù)的圖象可得函數(shù)的周期為
T=$\frac{2π}{ω}$=4×($\frac{π}{3}$-$\frac{π}{12}$),
解得ω=2,
∴f(x)=cos(2x+φ),
又當x=$\frac{π}{12}$時,f(x)=cos(2×$\frac{π}{12}$+φ)=1,
解得φ=-$\frac{π}{6}$+2kπ,k∈Z,
∴f(x)=cos(2x-$\frac{π}{6}$),
∴f(0)=cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$.
故選:D.

點評 本題考查了根據(jù)余弦函數(shù)的圖象求出解析式的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=2x2-4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[-1,3m]上不具有單調性,求實數(shù)m的取值范圍;
(2)若f(1)=g(1)
①求實數(shù)a的值;
②設t1=$\frac{1}{2}$f(x),t2=g(x),t3=2x,當x∈(0,1)時,試比較t1,t2,t3的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|x2<1},B=x|2x>$\sqrt{2}\}$,則A∩B=( 。
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.$(-\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{a-c}=\frac{a-b}{a+c}$,則角C等于( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若復數(shù)z滿足i(1-z)=2-i,則z的實部為(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.數(shù)列{an}的前n項和為Sn,且a1=1,Sn+1=3Sn+n+1,n∈N*,則{an}的通項公式an=$\frac{{3}^{n}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x-m在[0,$\frac{π}{2}$]上有兩個零點,則m的取值范圍是( 。
A.(1,2)B.[1,2]C.(1,2]D.[1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax-1.
(1)判斷函數(shù)f(x)的單調性;
(2)若g(x)=ln(ex-1)-lnx,當x∈(0,+∞)時,不等式f(g(x))<f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)f(x)是R上的奇函數(shù),且f(1)=a,若對任意x∈R,均有f(x+2)=f(x),則a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習冊答案