⑴已知數(shù)列中,,求數(shù)列的通項(xiàng)公式;
⑵已知為數(shù)列的前項(xiàng)和,,,求數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列中,,,.
(1)求證:是等差數(shù)列;并求數(shù)列的通項(xiàng)公式;
(2)假設(shè)對于任意的正整數(shù)、,都有,則稱該數(shù)列為“域收斂數(shù)列”. 試判斷: 數(shù)列,是否為一個(gè)“域收斂數(shù)列”,請說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列中,,,通項(xiàng)是項(xiàng)數(shù)的一次函數(shù),
①求的通項(xiàng)公式,并求;
②若是由組成,試歸納的一個(gè)通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省淄博市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)積為,
即,求;
(3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省等八校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前項(xiàng)積為,即,求;
(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣高三下學(xué)期期初測試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)已知數(shù)列中,, 為實(shí)常數(shù)),前項(xiàng)和恒為正值,且當(dāng)時(shí),.
⑴ 求證:數(shù)列是等比數(shù)列;
⑵ 設(shè)與的等差中項(xiàng)為,比較與的大;
⑶ 設(shè)是給定的正整數(shù),.現(xiàn)按如下方法構(gòu)造項(xiàng)數(shù)為有窮數(shù)列:
當(dāng)時(shí),;
當(dāng)時(shí),.
求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com