分析 當(dāng)△AOB面積取最大值時(shí),OA⊥OB,圓心O(0,0)到直線直線l的距離為$\frac{\sqrt{2}}{2}$,由此利用基本不等式,能求出a+b的最大值.
解答 解:當(dāng)△AOB面積取最大值時(shí),OA⊥OB,則圓心到直線的距離d=$\frac{1}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{2}}{2}$,
∴a2+b2=2,
∴(a+b)2≤2(a2+b2)=4,∴a+b≤2,
∴a+b的最大值為2,
故答案為2.
點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系,屬于中檔試題,本題的解答當(dāng)△AOB面積取最大值時(shí),OA⊥OB,此時(shí)圓心O到直線的距離為$\frac{\sqrt{2}}{2}$是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $-\frac{1}{2}$ | C. | $\frac{4}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{5}$ | B. | 1 | C. | $\frac{4}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{{\sqrt{2}}}{2},1)$ | B. | $(0,\frac{{\sqrt{2}}}{2})$ | C. | $(\frac{{\sqrt{3}}}{2},1)$ | D. | $(0,\frac{{\sqrt{3}}}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=n | B. | an=n2 | C. | an=$\frac{n}{2}$ | D. | an=$\frac{{n}^{2}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com